Solvable Lie algebra
From Wikipedia, the free encyclopedia
In mathematics, a Lie algebra g is solvable if its derived series terminates in the zero subalgebra. That is, writing
for the derived Lie algebra of g, generated by the
- [x,y]
for x and y in g, the derived series
becomes constant eventually at 0.
Any nilpotent Lie algebra is solvable, a fortiori, but the converse is not true. The solvable Lie algebras and the semisimple Lie algebras form two large and generally complementary classes, as is shown by the Levi decomposition.
Lie's Theorem states that if V is a finite-dimensional vector space over an algebraically closed field of characteristic zero, and g is a solvable linear Lie algebra over V, then there exists a basis of V relative to which the matrices of all elements of g are upper triangular.
A maximal solvable subalgebra is called a Borel subalgebra. The largest solvable ideal is called the radical.
Contents |
[edit] Solvable Lie groups
The terminology arises from the solvable groups of abstract group theory. There are several possible definitions of solvable Lie group. For a Lie group G, there is
- termination of the usual derived series, in other words taking G as an abstract group;
- termination of the closures of the derived series;
- having a solvable Lie algebra.
To have equivalence one needs to assume G connected. For connected Lie groups, these definitions are the same, and the derived series of Lie algebras are the Lie algebra of the derived series of (closed) subgroups.
[edit] See also
- Killing form
- Lie-Kolchin theorem
- Solvmanifold
- Dixmier mapping
[edit] External links
[edit] References
- Humphreys, James E. Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, 9. Springer-Verlag, New York, 1972. ISBN 0-387-90053-5