Snub dodecahedron

From Wikipedia, the free encyclopedia

Snub dodecahedron
Snub dodecahedron
(Click here for rotating model)
Type Archimedean solid
Elements F = 92, E = 150, V = 60 (χ = 2)
Faces by sides (20+60){3}+12{5}
Schläfli symbol s\begin{Bmatrix} 3 \\ 5 \end{Bmatrix}
Wythoff symbol | 2 3 5
Coxeter-Dynkin Image:CDW_hole.pngImage:CDW_5.pngImage:CDW_hole.pngImage:CDW_3.pngImage:CDW_hole.png
Symmetry I
References U29, C32, W18
Properties Semiregular convex chiral
Snub dodecahedron color
Colored faces
Snub dodecahedron
3.3.3.3.5
(Vertex figure)

Pentagonal hexecontahedron
(dual polyhedron)
Snub dodecahedron Net
Net

The snub dodecahedron, or snub icosidodecahedron, is an Archimedean solid.

The snub dodecahedron has 92 faces, of which 12 are pentagons and the other 80 are equilateral triangles. It also has 150 edges, and 60 vertices. It has two distinct forms, which are mirror images (or "enantiomorphs") of each other.

Contents

[edit] Geometric relations

The snub dodecahedron can be generated by taking the twelve pentagonal faces of the dodecahedron, pulling them outward so they no longer touch. At a proper distance this can create the rhombicosidodecahedron by filling in square faces between the divided edges and triangle faces between the divided vertices. But for the snub form, only add the triangle faces and leave the square gaps empty. Then apply an equal rotation to the centers of the pentagons and triangles, continuing the rotation until the gaps can be filled by two equilateral triangles.


Dodecahedron

Rhombicosidodecahedron
(Expanded dodecahedron)

Archimedes, an ancient Greek who showed major interest in polyhedral shapes wrote a treatise on thirteen semi-regular solids. Snub-Dodecahedron belongs to the thirteen semi-regular solids.

[edit] Cartesian coordinates

Cartesian coordinates for the vertices of a snub dodecahedron are all the even permutations of

(±2α, ±2, ±2β),
(±(α+β/τ+τ), ±(-ατ+β+1/τ), ±(α/τ+βτ-1)),
(±(-α/τ+βτ+1), ±(-α+β/τ-τ), ±(ατ+β-1/τ)),
(±(-α/τ+βτ-1), ±(α-β/τ-τ), ±(ατ+β+1/τ)) and
(±(α+β/τ-τ), ±(ατ-β+1/τ), ±(α/τ+βτ+1)),

with an even number of plus signs, where

α = ξ-1/ξ

and

β = ξτ+τ2+τ/ξ,

where τ = (1+√5)/2 is the golden mean and ξ is the real solution to ξ3-2ξ=τ, which is the beautiful number

\xi = \sqrt[3]{\frac{\tau}{2} + \frac{1}{2}\sqrt{\tau - \frac{5}{27}}} + \sqrt[3]{\frac{\tau}{2} - \frac{1}{2}\sqrt{\tau - \frac{5}{27}}}

or approximately 1.7155615. Taking the odd permutations of the above coordinates with an odd number of plus signs gives another form, the enantiomorph of the other one.

[edit] See also

[edit] References

[edit] External links