Image:Slogez01.jpg

From Wikipedia, the free encyclopedia

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.
Description

Levels of real and imaginary parts of function f = sloge(z) in the complex z-plane, plotted under assumption that the superlogatithm is inverse function of tetration and there exist unique tetration that approaches eigenvalues of logarithm in the second anf third quadrants.

Source

http://www.ils.uec.ac.jp/~dima/PAPERS/2008analuxp64.pdf , figure 7 "as is".

Date

2008

Author

Dmitrii Kouznetsov

Permission
(Reusing this image)

free use and distribution is specified at http://www.ils.uec.ac.jp/~dima/PAPERS/ that reads:"I allow you to use figures from my papers and presentations under condition that the source is attributed."

Other versions Image:Slogez00.pdf

© The copyright holder of this file allows anyone to use it for any purpose, provided that the copyright holder is properly attributed. Redistribution, derivative work, commercial use, and all other use is permitted.

Aragonés | العربية | Български | Català | Dansk | Deutsch | Ελληνικά | English | Español | Español | Français | עברית | Magyar | Galego | Italiano | 日本語 | 한국어 | Kurdî / كوردی | Latviešu | Nederlands | ‪Norsk (bokmål)‬ | Polski | Português | Svenska | Türkçe | Русский | ‪中文(简体)‬ | ‪中文(繁體)‬ | +/-

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current12:35, 7 May 2008580×580 (41 KB)Domitori ({{Information |Description=Levels of real and imaginary parts of function <math>f=slog_{\rm e}(z)</math> in the complex <math>z</math>-plane, plotted under assumption that the superlogatithm is inverse function of tetration and there exist unique tetratio)
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):