SLC31A1
From Wikipedia, the free encyclopedia
Solute carrier family 31 (copper transporters), member 1
|
||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | SLC31A1; CTR1; COPT1; MGC75487; hCTR1 | |||||||||||||
External IDs | OMIM: 603085 MGI: 1333843 HomoloGene: 1399 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 1317 | 20529 | ||||||||||||
Ensembl | ENSG00000136868 | ENSMUSG00000066150 | ||||||||||||
Uniprot | O15431 | Q3TDB6 | ||||||||||||
Refseq | NM_001859 (mRNA) NP_001850 (protein) |
NM_175090 (mRNA) NP_780299 (protein) |
||||||||||||
Location | Chr 9: 115.02 - 115.07 Mb | Chr 4: 61.85 - 61.88 Mb | ||||||||||||
Pubmed search | [1] | [2] |
Solute carrier family 31 (copper transporters), member 1, also known as SLC31A1, is a human gene.[1]
Copper is an element essential for life, but excessive copper can be toxic or even lethal to the cell. Therefore, cells have developed sophisticated ways to maintain a critical copper balance, with the intake, export, and intracellular compartmentalization or buffering of copper strictly regulated. The 2 related genes ATP7A (MIM 300011) and ATP7B (MIM 606882), responsible for the human diseases Menkes syndrome (MIM 309400) and Wilson disease (MIM 277900), respectively, are involved in copper export. In S. cerevisiae, the copper uptake genes CTR1, CTR2, and CTR3 have been identified, and in human the CTR1 and CTR2 (MIM 603088) genes have been identified.[supplied by OMIM][1]
[edit] See also
[edit] References
[edit] Further reading
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.". Gene 138 (1-2): 171–4. PMID 8125298.
- Zhou B, Gitschier J (1997). "hCTR1: a human gene for copper uptake identified by complementation in yeast.". Proc. Natl. Acad. Sci. U.S.A. 94 (14): 7481–6. PMID 9207117.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.". Gene 200 (1-2): 149–56. PMID 9373149.
- Møller LB, Petersen C, Lund C, Horn N (2001). "Characterization of the hCTR1 gene: genomic organization, functional expression, and identification of a highly homologous processed gene.". Gene 257 (1): 13–22. PMID 11054564.
- Lee J, Peña MM, Nose Y, Thiele DJ (2002). "Biochemical characterization of the human copper transporter Ctr1.". J. Biol. Chem. 277 (6): 4380–7. doi: . PMID 11734551.
- Puig S, Lee J, Lau M, Thiele DJ (2002). "Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake.". J. Biol. Chem. 277 (29): 26021–30. doi: . PMID 11983704.
- Klomp AE, Tops BB, Van Denberg IE, et al. (2002). "Biochemical characterization and subcellular localization of human copper transporter 1 (hCTR1).". Biochem. J. 364 (Pt 2): 497–505. doi: . PMID 12023893.
- Eisses JF, Kaplan JH (2002). "Molecular characterization of hCTR1, the human copper uptake protein.". J. Biol. Chem. 277 (32): 29162–71. doi: . PMID 12034741.
- Lee J, Petris MJ, Thiele DJ (2002). "Characterization of mouse embryonic cells deficient in the ctr1 high affinity copper transporter. Identification of a Ctr1-independent copper transport system.". J. Biol. Chem. 277 (43): 40253–9. doi: . PMID 12177073.
- Klomp AE, Juijn JA, van der Gun LT, et al. (2003). "The N-terminus of the human copper transporter 1 (hCTR1) is localized extracellularly, and interacts with itself.". Biochem. J. 370 (Pt 3): 881–9. doi: . PMID 12466020.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi: . PMID 12477932.
- Petris MJ, Smith K, Lee J, Thiele DJ (2003). "Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1.". J. Biol. Chem. 278 (11): 9639–46. doi: . PMID 12501239.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. doi: . PMID 14702039.
- Guo Y, Smith K, Lee J, et al. (2004). "Identification of methionine-rich clusters that regulate copper-stimulated endocytosis of the human Ctr1 copper transporter.". J. Biol. Chem. 279 (17): 17428–33. doi: . PMID 14976198.
- Guo Y, Smith K, Petris MJ (2004). "Cisplatin stabilizes a multimeric complex of the human Ctr1 copper transporter: requirement for the extracellular methionine-rich clusters.". J. Biol. Chem. 279 (45): 46393–9. doi: . PMID 15326162.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi: . PMID 15489334.
- Eisses JF, Chi Y, Kaplan JH (2005). "Stable plasma membrane levels of hCTR1 mediate cellular copper uptake.". J. Biol. Chem. 280 (10): 9635–9. doi: . PMID 15634665.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network.". Nature 437 (7062): 1173–8. doi: . PMID 16189514.
- Hardman B, Manuelpillai U, Wallace EM, et al. (2006). "Expression, localisation and hormone regulation of the human copper transporter hCTR1 in placenta and choriocarcinoma Jeg-3 cells.". Placenta 27 (9-10): 968–77. doi: . PMID 16356544.
- Aller SG, Unger VM (2006). "Projection structure of the human copper transporter CTR1 at 6-A resolution reveals a compact trimer with a novel channel-like architecture.". Proc. Natl. Acad. Sci. U.S.A. 103 (10): 3627–32. doi: . PMID 16501047.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.