SLC25A10
From Wikipedia, the free encyclopedia
Solute carrier family 25 (mitochondrial carrier; dicarboxylate transporter), member 10
|
||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | SLC25A10; DIC | |||||||||||||
External IDs | OMIM: 606794 MGI: 1353497 HomoloGene: 6519 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 1468 | 27376 | ||||||||||||
Ensembl | ENSG00000183048 | ENSMUSG00000025792 | ||||||||||||
Uniprot | Q9UBX3 | Q9QZD8 | ||||||||||||
Refseq | NM_012140 (mRNA) NP_036272 (protein) |
NM_013770 (mRNA) NP_038798 (protein) |
||||||||||||
Location | Chr 17: 77.29 - 77.3 Mb | Chr 11: 120.31 - 120.32 Mb | ||||||||||||
Pubmed search | [1] | [2] |
Solute carrier family 25 (mitochondrial carrier; dicarboxylate transporter), member 10, also known as SLC25A10, is a human gene.[1]
The dicarboxylate carrier catalyzes the transport of dicarboxylates such as malate and succinate across the mitochondrial membrane in exchange for phosphate, sulfate, and thiosulfate, thus supplying substrates for the Krebs cycle, gluconeogenesis, urea synthesis, and sulfur metabolism.[supplied by OMIM][1]
[edit] See also
[edit] References
[edit] Further reading
- Fiermonte G, Palmieri L, Dolce V, et al. (1998). "The sequence, bacterial expression, and functional reconstitution of the rat mitochondrial dicarboxylate transporter cloned via distant homologs in yeast and Caenorhabditis elegans.". J. Biol. Chem. 273 (38): 24754–9. PMID 9733776.
- Pannone E, Fiermonte G, Dolce V, et al. (1999). "Assignment of the human dicarboxylate carrier gene (DIC) to chromosome 17 band 17q25.3.". Cytogenet. Cell Genet. 83 (3-4): 238–9. PMID 10072589.
- Fiermonte G, Dolce V, Arrigoni R, et al. (2000). "Organization and sequence of the gene for the human mitochondrial dicarboxylate carrier: evolution of the carrier family.". Biochem. J. 344 Pt 3: 953–60. PMID 10585886.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi: . PMID 12477932.
- Douglas MW, Diefenbach RJ, Homa FL, et al. (2004). "Herpes simplex virus type 1 capsid protein VP26 interacts with dynein light chains RP3 and Tctex1 and plays a role in retrograde cellular transport.". J. Biol. Chem. 279 (27): 28522–30. doi: . PMID 15117959.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi: . PMID 15489334.
- Mizuarai S, Miki S, Araki H, et al. (2005). "Identification of dicarboxylate carrier Slc25a10 as malate transporter in de novo fatty acid synthesis.". J. Biol. Chem. 280 (37): 32434–41. doi: . PMID 16027120.
- Khanna H, Hurd TW, Lillo C, et al. (2005). "RPGR-ORF15, which is mutated in retinitis pigmentosa, associates with SMC1, SMC3, and microtubule transport proteins.". J. Biol. Chem. 280 (39): 33580–7. doi: . PMID 16043481.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network.". Nature 437 (7062): 1173–8. doi: . PMID 16189514.
- Otsuki T, Ota T, Nishikawa T, et al. (2007). "Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries.". DNA Res. 12 (2): 117–26. doi: . PMID 16303743.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.