SLC13A3
From Wikipedia, the free encyclopedia
Solute carrier family 13 (sodium-dependent dicarboxylate transporter), member 3
|
||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | SLC13A3; NADC3; SDCT2 | |||||||||||||
External IDs | OMIM: 606411 MGI: 2149635 HomoloGene: 11266 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 64849 | 114644 | ||||||||||||
Ensembl | ENSG00000158296 | ENSMUSG00000018459 | ||||||||||||
Uniprot | Q8WWT9 | Q3UUJ6 | ||||||||||||
Refseq | NM_001011554 (mRNA) NP_001011554 (protein) |
NM_054055 (mRNA) NP_473396 (protein) |
||||||||||||
Location | Chr 20: 44.62 - 44.73 Mb | Chr 2: 165.1 - 165.16 Mb | ||||||||||||
Pubmed search | [1] | [2] |
Solute carrier family 13 (sodium-dependent dicarboxylate transporter), member 3, also known as SLC13A3, is a human gene.[1]
Mammalian sodium-dicarboxylate cotransporters transport succinate and other Krebs cycle intermediates. They fall into 2 categories based on their substrate affinity: low affinity and high affinity. Both the low- and high-affinity transporters play an important role in the handling of citrate by the kidneys. The protein encoded by this gene represents the high-affinity form. Alternatively spliced transcript variants encoding different isoforms have been found for this gene, although the full-length nature of some of them have not been characterized yet.[1]
[edit] See also
[edit] References
[edit] Further reading
- Markovich D, Murer H (2004). "The SLC13 gene family of sodium sulphate/carboxylate cotransporters.". Pflugers Arch. 447 (5): 594-602. doi: . PMID 12915942.
- Wang H, Fei YJ, Kekuda R, et al. (2000). "Structure, function, and genomic organization of human Na(+)-dependent high-affinity dicarboxylate transporter.". Am. J. Physiol., Cell Physiol. 278 (5): C1019-30. PMID 10794676.
- Huang W, Wang H, Kekuda R, et al. (2000). "Transport of N-acetylaspartate by the Na(+)-dependent high-affinity dicarboxylate transporter NaDC3 and its relevance to the expression of the transporter in the brain.". J. Pharmacol. Exp. Ther. 295 (1): 392-403. PMID 10992006.
- Deloukas P, Matthews LH, Ashurst J, et al. (2002). "The DNA sequence and comparative analysis of human chromosome 20.". Nature 414 (6866): 865-71. doi: . PMID 11780052.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899-903. doi: . PMID 12477932.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40-5. doi: . PMID 14702039.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121-7. doi: . PMID 15489334.
- Burckhardt BC, Lorenz J, Kobbe C, Burckhardt G (2005). "Substrate specificity of the human renal sodium dicarboxylate cotransporter, hNaDC-3, under voltage-clamp conditions.". Am. J. Physiol. Renal Physiol. 288 (4): F792-9. doi: . PMID 15561973.
- Bai X, Chen X, Feng Z, et al. (2006). "Identification of basolateral membrane targeting signal of human sodium-dependent dicarboxylate transporter 3.". J. Cell. Physiol. 206 (3): 821-30. doi: . PMID 16331647.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.