Skoda-El Mir theorem

From Wikipedia, the free encyclopedia

The Skoda-El Mir theorem is a theorem of complex geometry, stated as follows:

Theorem (Skoda [1], El Mir [2], Sibony [3]). Let X be a complex manifold, and E a closed complete pluripolar set in X. Consider a closed positive current Θ on  X \backslash E which is locally integrable around E. Then the trivial extension of Θ to X is closed on X.

[edit] References

[edit] Notes

  1. ^ H. Skoda. Prolongement des courants positifs fermes de masse finie, Invent. Math., 66 (1982), 361-376.
  2. ^ H. El Mir. Sur le prolongement des courants positifs fermes, Acta Math., 153 (1984), 1-45.
  3. ^ N. Sibony, Quelques problemes de prolongement de courants en analyse complexe, Duke Math. J., 52 (1985), 157-197