SKI protein

From Wikipedia, the free encyclopedia

V-ski sarcoma viral oncogene homolog (avian)
PDB rendering based on 1mr1.
Available structures: 1mr1, 1sbx
Identifiers
Symbol(s) SKI; SKV
External IDs OMIM: 164780 MGI98310 HomoloGene31124
RNA expression pattern

More reference expression data

Orthologs
Human Mouse
Entrez 6497 20481
Ensembl ENSG00000157933 ENSMUSG00000029050
Uniprot P12755 Q8K0R3
Refseq NM_003036 (mRNA)
NP_003027 (protein)
XM_990039 (mRNA)
XP_995133 (protein)
Location Chr 1: 2.15 - 2.23 Mb Chr 4: 154 - 154.07 Mb
Pubmed search [1] [2]
Crystal structure of the Dachshund-homology domain of human SKI.  From PDB 1SBX.
Crystal structure of the Dachshund-homology domain of human SKI. From PDB 1SBX.

The Ski protein is a nuclear protooncoprotein that is associated with tumors at high cellular concentrations.[1] Ski has been shown to interfere with normal cellular functioning by both directly impeding expression of certain genes inside the nucleus of the cell as well as disrupting signaling proteins that activate genes.[2]

Ski negatively regulates transforming growth factor-beta (TGF-beta) by directly interacting with Smads and repressing the transcription of TGF-beta genes.[3] This has been associated with cancer due to the large number of roles that peptide growth factors, of which TGF-beta are a subfamily, play in regulating cellular functions such as cell proliferation, apoptosis, specification, and developmental fate.[4]

The name Ski comes from the Sloan-Kettering Institute where the protein was initially discovered.


Contents

[edit] Ski Proto-oncogene and Protein Structure

The SKI proto-oncogene is located at a region close to the p73 tumor suppressor gene at the locus 1p36.3 locus of a gene, suggesting a similar function to the p73 gene.[5]

The SKI protein has a 728 amino acid sequence, with multiple domains and is expressed both inside and outside of the nucleus.[5] It is in the same family as the SnoN protein. The different domains have different functions, with the primary domains interacting with Smad proteins. The protein has a helix-turn-helix motif, a cysteine and histidine rich area which gives rise to the zinc finger motif, a basic amino acid region, and leucine zipper. All these domains, including a proline rich region, are consistent with the fact that the protein must have domains that allow it to interact with other proteins.[5] The protein also has hydrophobic regions which come into contact with Smad proteins rich in leucine and phenylalanine amino acid regions.[6] Recent studies have suggested a domain similar to the Dachshund protein. The SKI-Dachshund homology domain (SKI-DHD) contains the helix turn helix domains of the protein and the beta-alpha-beta turn motifs.[3]

[edit] Amino Acid Sequence

FMPSDRSTERCETVLEGETISCFVVGGEKRLCLPQILNNSVLRDF ... SLQQINAVCDELHIYCSRCTADQLEILKVMGILPFSAPSCGLITKTDAERLCNALLYG [3]

[edit] Physiology and Function

The SKI oncogene is present in all cells, and is commonly active during development. Specifically, avian fibroblasts depend on the SKI protein as a transcription co-regulator inducing transformation.[5] The aforementioned DHD region is specifically employed for protein-protein interactions, while the 191 amino acid C terminus mediates oligomerization.[3] Recent research shows that the SKI protein in cancerous cells acts as a suppressor, inhibiting transforming growth factor β (TFG- β) signaling. TFG- β is a protein which regulates cell growth. Signaling is regulated by a family of proteins called the Smad proteins. SKI is present in all adult and embryonic cells at low levels, however an over expression of the protein is characteristic of tumor cells.[6] It is thought that high levels of SKI protein inactivate tumor suppression by displacement of other proteins and interference with the signaling pathway of TGF- β.[5] The SKI protein and the CPB protein compete for binding with the Smad proteins, specifically competing with the Smad-3 and CReB-binding protein interactions. SKI also directly interacts with the R-Smad ∙ Smad-4 complex, which directly represses normal transcription of the TGF-β responsive genes, inactivating the cell’s ability to stop growth and division, creating cancerous cells.[6]

SKI has been linked to various cancers including human melanomas, esophageal squamous cell carcinoma, cervical cancer and the process of tumor progression. The link of SKI with human melanoma has been the most studied area of the protein’s link to cancer. Currently it is thought that the SKI protein prevents response to TFG- β levels, causing tumor formation.[5]

[edit] Related Research

Other research has identified proteins similar to Ski. The SnoN protein was identified as a similar protein and is often discussed in conjugation with the Ski protein in publications. Recent research suggests that the role of SnoN could be somewhat different, and could potentially even play an antagonistic role.[7]

Other recent studies have determined Fussel-15 and Fussel-18 to be homologous to the Ski/Sno family of proteins. Fussel-15 has been found to play much the same role as the Ski/Sno proteins, however its expression is not as ubiquitous as the Ski/Sno proteins. Fussel-18 has been found to have an inhibitory role in the TGF-beta signaling.[8]

[edit] Citations

  1. ^ Vignais ML (Feb 2000). "[Ski and SnoN: antagonistic proteins of TGFbeta signaling]" (in French). Bull Cancer 87 (2): 135–7. PMID 10705283. 
  2. ^ Cell 2002;111:1-20.
  3. ^ a b c d Wilson JJ, Malakhova M, Zhang R, Joachimiak A, Hegde RS (May 2004). "Crystal structure of the dachshund homology domain of human SKI". Structure 12 (5): 785–92. doi:10.1016/j.str.2004.02.035. PMID 15130471. 
  4. ^ Whitman M (Aug 1998). "Smads and early developmental signaling by the TGFbeta superfamily". Genes Dev. 12 (16): 2445–62. doi:10.1101/gad.12.16.2445. PMID 9716398. 
  5. ^ a b c d e f Reed JA, Lin Q, Chen D, Mian IS, Medrano EE (Jun 2005). "SKI pathways inducing progression of human melanoma". Cancer Metastasis Rev. 24 (2): 265–72. doi:10.1007/s10555-005-1576-x. PMID 15986136. 
  6. ^ a b c Chen W, Lam SS, Srinath H, Schiffer CA, Royer WE, Lin K (Apr 2007). "Competition between Ski and CREB-binding protein for binding to Smad proteins in transforming growth factor-beta signaling". J. Biol. Chem. 282 (15): 11365–76. doi:10.1074/jbc.M700186200. PMID 17283070. 
  7. ^ Ramel MC, Emery CM, Emery CS, et al (Apr 2007). "Drosophila SnoN modulates growth and patterning by antagonizing TGF-beta signalling". Mech. Dev. 124 (4): 304–17. doi:10.1016/j.mod.2006.12.006. PMID 17289352. 
  8. ^ Arndt S, Poser I, Moser M, Bosserhoff AK (Apr 2007). "Fussel-15, a novel Ski/Sno homolog protein, antagonizes BMP signaling". Mol. Cell. Neurosci. 34 (4): 603–11. doi:10.1016/j.mcn.2007.01.002. PMID 17292623. 

[edit] Further reading

  • Medrano EE (2003). "Repression of TGF-beta signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis.". Oncogene 22 (20): 3123–9. PMID 12793438. 
  • Nomura N, Sasamoto S, Ishii S, et al. (1989). "Isolation of human cDNA clones of ski and the ski-related gene, sno.". Nucleic Acids Res. 17 (14): 5489–500. PMID 2762147. 
  • Chaganti RS, Balazs I, Jhanwar SC, et al. (1987). "The cellular homologue of the transforming gene of SKV avian retrovirus maps to human chromosome region 1q22----q24.". Cytogenet. Cell Genet. 43 (3-4): 181–6. PMID 3026737. 
  • Pearson-White S (1993). "SnoI, a novel alternatively spliced isoform of the ski protooncogene homolog, sno.". Nucleic Acids Res. 21 (19): 4632–8. PMID 8233802. 
  • Nagase T, Nomura N, Ishii S (1993). "Complex formation between proteins encoded by the ski gene family.". J. Biol. Chem. 268 (18): 13710–6. PMID 8514802. 
  • Tarapore P, Richmond C, Zheng G, et al. (1997). "DNA binding and transcriptional activation by the Ski oncoprotein mediated by interaction with NFI.". Nucleic Acids Res. 25 (19): 3895–903. PMID 9380514. 
  • Dahl R, Wani B, Hayman MJ (1998). "The Ski oncoprotein interacts with Skip, the human homolog of Drosophila Bx42.". Oncogene 16 (12): 1579–86. doi:10.1038/sj.onc.1201687. PMID 9569025. 
  • Cohen SB, Zheng G, Heyman HC, Stavnezer E (1999). "Heterodimers of the SnoN and Ski oncoproteins form preferentially over homodimers and are more potent transforming agents.". Nucleic Acids Res. 27 (4): 1006–14. PMID 9927733. 
  • Luo K, Stroschein SL, Wang W, et al. (1999). "The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling.". Genes Dev. 13 (17): 2196–206. PMID 10485843. 
  • Sun Y, Liu X, Eaton EN, et al. (1999). "Interaction of the Ski oncoprotein with Smad3 regulates TGF-beta signaling.". Mol. Cell 4 (4): 499–509. PMID 10549282. 
  • Akiyoshi S, Inoue H, Hanai J, et al. (2000). "c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads.". J. Biol. Chem. 274 (49): 35269–77. PMID 10575014. 
  • Steffan JS, Kazantsev A, Spasic-Boskovic O, et al. (2000). "The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription.". Proc. Natl. Acad. Sci. U.S.A. 97 (12): 6763–8. doi:10.1073/pnas.100110097. PMID 10823891. 
  • Khan MM, Nomura T, Kim H, et al. (2001). "Role of PML and PML-RARalpha in Mad-mediated transcriptional repression.". Mol. Cell 7 (6): 1233–43. PMID 11430826. 
  • Kokura K, Kaul SC, Wadhwa R, et al. (2001). "The Ski protein family is required for MeCP2-mediated transcriptional repression.". J. Biol. Chem. 276 (36): 34115–21. doi:10.1074/jbc.M105747200. PMID 11441023. 
  • Prathapam T, Kühne C, Hayman M, Banks L (2001). "Ski interacts with the evolutionarily conserved SNW domain of Skip.". Nucleic Acids Res. 29 (17): 3469–76. PMID 11522815. 
  • Reed JA, Bales E, Xu W, et al. (2001). "Cytoplasmic localization of the oncogenic protein Ski in human cutaneous melanomas in vivo: functional implications for transforming growth factor beta signaling.". Cancer Res. 61 (22): 8074–8. PMID 11719430. 
  • Pessah M, Marais J, Prunier C, et al. (2002). "c-Jun associates with the oncoprotein Ski and suppresses Smad2 transcriptional activity.". J. Biol. Chem. 277 (32): 29094–100. doi:10.1074/jbc.M202831200. PMID 12034730. 
  • Wu JW, Krawitz AR, Chai J, et al. (2002). "Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-beta signaling.". Cell 111 (3): 357–67. PMID 12419246. 
  • Dai P, Shinagawa T, Nomura T, et al. (2002). "Ski is involved in transcriptional regulation by the repressor and full-length forms of Gli3.". Genes Dev. 16 (22): 2843–8. doi:10.1101/gad.1017302. PMID 12435627. 
  • He J, Tegen SB, Krawitz AR, et al. (2003). "The transforming activity of Ski and SnoN is dependent on their ability to repress the activity of Smad proteins.". J. Biol. Chem. 278 (33): 30540–7. doi:10.1074/jbc.M304016200. PMID 12764135.