Signal conditioning
From Wikipedia, the free encyclopedia
This article or section is in need of attention from an expert on the subject. Please help recruit one or improve this article yourself. See the talk page for details. Please consider using {{Expert-subject}} to associate this request with a WikiProject |
This article does not cite any references or sources. (November 2007) Please help improve this article by adding citations to reliable sources. Unverifiable material may be challenged and removed. |
In electronics, signal conditioning means manipulating an analogue signal in such a way that it meets the requirements of the next stage for further processing. For example, the output of an electronic temperature sensor, which is probably in the millivolts range is probably too low for an Analog-to-digital converter (ADC) to process directly. In this case the signal conditioning is the amplification necessary to bring the voltage level up to that required by the ADC.
In control engineering applications, it is common to have a sensing stage (which consists of a sensor), a signal conditioning stage (where usually amplification of the signal is done) and a processing stage (normally carried out by an ADC and a micro-controller). Operational amplifiers (op-amps) are commonly employed to carry out the amplification of the signal in the signal conditioning stage.
More generally, signal conditioning can include amplification, filtering, converting, and any other processes required to make sensor output suitable for conversion to digital format. It is primarily utilized for data acquisition, in which sensor signals must be normalized and filtered to levels suitable for analog-to-digital conversion so they can be read by computerized devices.
Types of devices that use signal conditioning include signal filters, instrument amplifiers, sample-and-hold amplifiers, isolation amplifiers, signal isolators, multiplexers, bridge conditioners, analog-to-digital converters, digital-to-analog converters, frequency converters or translators, voltage converters or inverters, frequency-to-voltage converters, voltage-to-frequency converters, current-to-voltage converters, current loop converters, and charge converters.
Signal inputs accepted by signal conditioners include DC voltage and current, AC voltage and current, frequency and electric charge. Sensor inputs can be accelerometer, thermocouple, thermistor, RTD, strain gauge or bridge, and LVDT or RVDT. Specialized inputs include encoder, counter or tachometer, timer or clock, relay or switch, and other specialized inputs. Outputs for signal conditioning equipment can be voltage, current, frequency, timer or counter, relay, resistance or potentiometer, and other specialized outputs.