SF3A3
From Wikipedia, the free encyclopedia
Splicing factor 3a, subunit 3, 60kDa
|
||||||||||||||
PDB rendering based on 2dt7. | ||||||||||||||
Available structures: 2dt7 | ||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | SF3A3; PRP9; PRPF9; SAP61; SF3a60 | |||||||||||||
External IDs | OMIM: 605596 MGI: 1922312 HomoloGene: 4949 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 10946 | 75062 | ||||||||||||
Ensembl | ENSG00000183431 | n/a | ||||||||||||
Uniprot | Q12874 | n/a | ||||||||||||
Refseq | NM_006802 (mRNA) NP_006793 (protein) |
XM_620099 (mRNA) XP_620099 (protein) |
||||||||||||
Location | Chr 1: 38.2 - 38.23 Mb | n/a | ||||||||||||
Pubmed search | [1] | [2] |
Splicing factor 3a, subunit 3, 60kDa, also known as SF3A3, is a human gene.[1]
This gene encodes subunit 3 of the splicing factor 3a protein complex. The splicing factor 3a heterotrimer includes subunits 1, 2 and 3 and is necessary for the in vitro conversion of 15S U2 snRNP into an active 17S particle that performs pre-mRNA splicing. Subunit 3 interacts with subunit 1 through its amino-terminus while the zinc finger domain of subunit 3 plays a role in its binding to the 15S U2 snRNP. This gene has a pseudogene on chromosome 20.[1]
[edit] References
[edit] Further reading
- Krämer A, Legrain P, Mulhauser F, et al. (1995). "Splicing factor SF3a60 is the mammalian homologue of PRP9 of S.cerevisiae: the conserved zinc finger-like motif is functionally exchangeable in vivo.". Nucleic Acids Res. 22 (24): 5223–8. PMID 7816610.
- Chiara MD, Champion-Arnaud P, Buvoli M, et al. (1994). "Specific protein-protein interactions between the essential mammalian spliceosome-associated proteins SAP 61 and SAP 114.". Proc. Natl. Acad. Sci. U.S.A. 91 (14): 6403–7. PMID 8022796.
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.". Gene 138 (1-2): 171–4. PMID 8125298.
- Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery.". Genome Res. 6 (9): 791–806. PMID 8889548.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.". Gene 200 (1-2): 149–56. PMID 9373149.
- Neubauer G, King A, Rappsilber J, et al. (1998). "Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex.". Nat. Genet. 20 (1): 46–50. doi: . PMID 9731529.
- Das R, Zhou Z, Reed R (2000). "Functional association of U2 snRNP with the ATP-independent spliceosomal complex E.". Mol. Cell 5 (5): 779–87. PMID 10882114.
- Will CL, Schneider C, MacMillan AM, et al. (2001). "A novel U2 and U11/U12 snRNP protein that associates with the pre-mRNA branch site.". EMBO J. 20 (16): 4536–46. doi: . PMID 11500380.
- Nesic D, Krämer A (2001). "Domains in human splicing factors SF3a60 and SF3a66 required for binding to SF3a120, assembly of the 17S U2 snRNP, and prespliceosome formation.". Mol. Cell. Biol. 21 (19): 6406–17. PMID 11533230.
- Jurica MS, Licklider LJ, Gygi SR, et al. (2002). "Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis.". RNA 8 (4): 426–39. PMID 11991638.
- Will CL, Urlaub H, Achsel T, et al. (2002). "Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein.". EMBO J. 21 (18): 4978–88. PMID 12234937.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi: . PMID 12477932.
- Dubois T, Zemlickova E, Howell S, Aitken A (2003). "Centaurin-alpha 1 associates in vitro and in vivo with nucleolin.". Biochem. Biophys. Res. Commun. 301 (2): 502–8. PMID 12565890.
- Li J, Hawkins IC, Harvey CD, et al. (2003). "Regulation of alternative splicing by SRrp86 and its interacting proteins.". Mol. Cell. Biol. 23 (21): 7437–47. PMID 14559993.
- Nesic D, Tanackovic G, Krämer A (2005). "A role for Cajal bodies in the final steps of U2 snRNP biogenesis.". J. Cell. Sci. 117 (Pt 19): 4423–33. doi: . PMID 15316075.
- Lin KT, Lu RM, Tarn WY (2004). "The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo.". Mol. Cell. Biol. 24 (20): 9176–85. doi: . PMID 15456888.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi: . PMID 15489334.
- Rush J, Moritz A, Lee KA, et al. (2005). "Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.". Nat. Biotechnol. 23 (1): 94–101. doi: . PMID 15592455.
- Andersen JS, Lam YW, Leung AK, et al. (2005). "Nucleolar proteome dynamics.". Nature 433 (7021): 77–83. doi: . PMID 15635413.
- Tanackovic G, Krämer A (2005). "Human splicing factor SF3a, but not SF1, is essential for pre-mRNA splicing in vivo.". Mol. Biol. Cell 16 (3): 1366–77. doi: . PMID 15647371.