SF3A1
From Wikipedia, the free encyclopedia
Splicing factor 3a, subunit 1, 120kDa
|
||||||||||||||
PDB rendering based on 1we7. | ||||||||||||||
Available structures: 1we7, 1zkh, 2dt6, 2dt7 | ||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | SF3A1; PRP21; PRPF21; SAP114; SF3A120 | |||||||||||||
External IDs | OMIM: 605595 MGI: 1914715 HomoloGene: 4294 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 10291 | 67465 | ||||||||||||
Ensembl | ENSG00000099995 | ENSMUSG00000002129 | ||||||||||||
Uniprot | Q15459 | Q3TVM1 | ||||||||||||
Refseq | NM_001005409 (mRNA) NP_001005409 (protein) |
NM_026175 (mRNA) NP_080451 (protein) |
||||||||||||
Location | Chr 22: 29.06 - 29.08 Mb | Chr 11: 4.06 - 4.08 Mb | ||||||||||||
Pubmed search | [1] | [2] |
Splicing factor 3a, subunit 1, 120kDa, also known as SF3A1, is a human gene.[1]
This gene encodes subunit 1 of the splicing factor 3a protein complex. The splicing factor 3a heterotrimer includes subunits 1, 2 and 3 and is necessary for the in vitro conversion of 15S U2 snRNP into an active 17S particle that performs pre-mRNA splicing. Subunit 1 belongs to the SURP protein family; named for the SURP (also called SWAP or Suppressor-of-White-APricot) motifs that are thought to mediate RNA binding. Subunit 1 has tandemly repeated SURP motifs in its amino-terminal half while its carboxy-terminal half contains a proline-rich region and a ubiquitin-like domain. Binding studies with truncated subunit 1 derivatives demonstrated that the two SURP motifs are necessary for binding to subunit 3 while contacts with subunit 2 may occur through sequences carboxy-terminal to the SURP motifs. Alternative splicing results in multiple transcript variants encoding different isoforms.[1]
[edit] References
[edit] Further reading
- Krämer A, Mulhauser F, Wersig C, et al. (1996). "Mammalian splicing factor SF3a120 represents a new member of the SURP family of proteins and is homologous to the essential splicing factor PRP21p of Saccharomyces cerevisiae.". RNA 1 (3): 260–72. PMID 7489498.
- Chiara MD, Champion-Arnaud P, Buvoli M, et al. (1994). "Specific protein-protein interactions between the essential mammalian spliceosome-associated proteins SAP 61 and SAP 114.". Proc. Natl. Acad. Sci. U.S.A. 91 (14): 6403–7. PMID 8022796.
- Rain JC, Tartakoff AM, Krämer A, Legrain P (1996). "Essential domains of the PRP21 splicing factor are implicated in the binding to PRP9 and PRP11 proteins and are conserved through evolution.". RNA 2 (6): 535–50. PMID 8718683.
- Neubauer G, King A, Rappsilber J, et al. (1998). "Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex.". Nat. Genet. 20 (1): 46–50. doi: . PMID 9731529.
- "Toward a complete human genome sequence." (1999). Genome Res. 8 (11): 1097–108. PMID 9847074.
- Krämer A, Grüter P, Gröning K, Kastner B (1999). "Combined biochemical and electron microscopic analyses reveal the architecture of the mammalian U2 snRNP.". J. Cell Biol. 145 (7): 1355–68. PMID 10385517.
- Dunham I, Shimizu N, Roe BA, et al. (1999). "The DNA sequence of human chromosome 22.". Nature 402 (6761): 489–95. doi: . PMID 10591208.
- Das R, Zhou Z, Reed R (2000). "Functional association of U2 snRNP with the ATP-independent spliceosomal complex E.". Mol. Cell 5 (5): 779–87. PMID 10882114.
- Gunther M, Laithier M, Brison O (2000). "A set of proteins interacting with transcription factor Sp1 identified in a two-hybrid screening.". Mol. Cell. Biochem. 210 (1-2): 131–42. PMID 10976766.
- Ajuh P, Kuster B, Panov K, et al. (2001). "Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry.". EMBO J. 19 (23): 6569–81. doi: . PMID 11101529.
- Suzuki Y, Tsunoda T, Sese J, et al. (2001). "Identification and characterization of the potential promoter regions of 1031 kinds of human genes.". Genome Res. 11 (5): 677–84. doi: . PMID 11337467.
- Will CL, Schneider C, MacMillan AM, et al. (2001). "A novel U2 and U11/U12 snRNP protein that associates with the pre-mRNA branch site.". EMBO J. 20 (16): 4536–46. doi: . PMID 11500380.
- Nesic D, Krämer A (2001). "Domains in human splicing factors SF3a60 and SF3a66 required for binding to SF3a120, assembly of the 17S U2 snRNP, and prespliceosome formation.". Mol. Cell. Biol. 21 (19): 6406–17. PMID 11533230.
- Jurica MS, Licklider LJ, Gygi SR, et al. (2002). "Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis.". RNA 8 (4): 426–39. PMID 11991638.
- Will CL, Urlaub H, Achsel T, et al. (2002). "Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein.". EMBO J. 21 (18): 4978–88. PMID 12234937.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi: . PMID 12477932.
- Beausoleil SA, Jedrychowski M, Schwartz D, et al. (2004). "Large-scale characterization of HeLa cell nuclear phosphoproteins.". Proc. Natl. Acad. Sci. U.S.A. 101 (33): 12130–5. doi: . PMID 15302935.
- Nesic D, Tanackovic G, Krämer A (2005). "A role for Cajal bodies in the final steps of U2 snRNP biogenesis.". J. Cell. Sci. 117 (Pt 19): 4423–33. doi: . PMID 15316075.
- Lin KT, Lu RM, Tarn WY (2004). "The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo.". Mol. Cell. Biol. 24 (20): 9176–85. doi: . PMID 15456888.
- Collins JE, Wright CL, Edwards CA, et al. (2005). "A genome annotation-driven approach to cloning the human ORFeome.". Genome Biol. 5 (10): R84. doi: . PMID 15461802.