SETDB1
From Wikipedia, the free encyclopedia
SET domain, bifurcated 1
|
||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | SETDB1; ESET; KG1T; KIAA0067 | |||||||||||||
External IDs | OMIM: 604396 MGI: 1934229 HomoloGene: 32157 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 9869 | 84505 | ||||||||||||
Ensembl | ENSG00000143379 | ENSMUSG00000015697 | ||||||||||||
Uniprot | Q15047 | Q6AXH8 | ||||||||||||
Refseq | NM_012432 (mRNA) NP_036564 (protein) |
NM_018877 (mRNA) NP_061365 (protein) |
||||||||||||
Location | Chr 1: 149.17 - 149.2 Mb | Chr 3: 95.41 - 95.44 Mb | ||||||||||||
Pubmed search | [1] | [2] |
SET domain, bifurcated 1, also known as SETDB1, is a human gene.[1]
The SET domain is a highly conserved, approximately 150-amino acid motif implicated in the modulation of chromatin structure. It was originally identified as part of a larger conserved region present in the Drosophila Trithorax protein and was subsequently identified in the Drosophila Su(var)3-9 and 'Enhancer of zeste' proteins, from which the acronym SET is derived. Studies have suggested that the SET domain may be a signature of proteins that modulate transcriptionally active or repressed chromatin states through chromatin remodeling activities.[supplied by OMIM][1]
[edit] References
[edit] Further reading
- Nomura N, Nagase T, Miyajima N, et al. (1995). "Prediction of the coding sequences of unidentified human genes. II. The coding sequences of 40 new genes (KIAA0041-KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1.". DNA Res. 1 (5): 223–9. PMID 7584044.
- Harte PJ, Wu W, Carrasquillo MM, Matera AG (1999). "Assignment of a novel bifurcated SET domain gene, SETDB1, to human chromosome band 1q21 by in situ hybridization and radiation hybrids.". Cytogenet. Cell Genet. 84 (1-2): 83–6. PMID 10343109.
- Yang L, Xia L, Wu DY, et al. (2002). "Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor.". Oncogene 21 (1): 148–52. doi: . PMID 11791185.
- Schultz DC, Ayyanathan K, Negorev D, et al. (2002). "SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins.". Genes Dev. 16 (8): 919–32. doi: . PMID 11959841.
- Yang L, Mei Q, Zielinska-Kwiatkowska A, et al. (2003). "An ERG (ets-related gene)-associated histone methyltransferase interacts with histone deacetylases 1/2 and transcription co-repressors mSin3A/B.". Biochem. J. 369 (Pt 3): 651–7. doi: . PMID 12398767.
- Nakayama M, Kikuno R, Ohara O (2003). "Protein-protein interactions between large proteins: two-hybrid screening using a functionally classified library composed of long cDNAs.". Genome Res. 12 (11): 1773–84. doi: . PMID 12421765.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi: . PMID 12477932.
- Ayyanathan K, Lechner MS, Bell P, et al. (2003). "Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation.". Genes Dev. 17 (15): 1855–69. doi: . PMID 12869583.
- Wang H, An W, Cao R, et al. (2003). "mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression.". Mol. Cell 12 (2): 475–87. PMID 14536086.
- Paces-Fessy M, Boucher D, Petit E, et al. (2004). "The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins.". Biochem. J. 378 (Pt 2): 353–62. doi: . PMID 14611647.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. doi: . PMID 14702039.
- Colland F, Jacq X, Trouplin V, et al. (2004). "Functional proteomics mapping of a human signaling pathway.". Genome Res. 14 (7): 1324–32. doi: . PMID 15231748.
- Sarraf SA, Stancheva I (2004). "Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly.". Mol. Cell 15 (4): 595–605. doi: . PMID 15327775.
- Goehler H, Lalowski M, Stelzl U, et al. (2004). "A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease.". Mol. Cell 15 (6): 853–65. doi: . PMID 15383276.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi: . PMID 15489334.
- Ichimura T, Watanabe S, Sakamoto Y, et al. (2005). "Transcriptional repression and heterochromatin formation by MBD1 and MCAF/AM family proteins.". J. Biol. Chem. 280 (14): 13928–35. doi: . PMID 15691849.
- Verschure PJ, van der Kraan I, de Leeuw W, et al. (2005). "In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation.". Mol. Cell. Biol. 25 (11): 4552–64. doi: . PMID 15899859.
- Gevaert K, Staes A, Van Damme J, et al. (2006). "Global phosphoproteome analysis on human HepG2 hepatocytes using reversed-phase diagonal LC.". Proteomics 5 (14): 3589–99. doi: . PMID 16097034.
- Stelzl U, Worm U, Lalowski M, et al. (2005). "A human protein-protein interaction network: a resource for annotating the proteome.". Cell 122 (6): 957–68. doi: . PMID 16169070.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network.". Nature 437 (7062): 1173–8. doi: . PMID 16189514.