Template:Semireg polyhedra db
From Wikipedia, the free encyclopedia
{{{{{1}}}|{{{2}}}|
|tT-name=Truncated tetrahedron| |tT-image=Truncated tetrahedron.png| |tT-image2=Truncatedtetrahedron.jpg| |tT-image3=Truncatedtetrahedron.gif| |tT-dimage=Triakistetrahedron.jpg| |tT-vfigimage=Truncated tetrahedron vertfig.png|tT-netimage=Truncated tetrahedron flat.svg| |tT-vfig=3.6.6| |tT-Wythoff=2 3 | 3| |tT-W=6|tT-U=02|tT-K=07|tT-C=16| |tT-V=12|tT-E=18|tT-F=8|tT-Fdetail=4{3}+4{6}| |tT-chi=2|tT-group=Td| |tT-B=Tut|tT-special=|tT-schl=t{3,3}| |tT-dual=Triakis tetrahedron| |tT-CD=
|tO-name=Truncated octahedron| |tO-image=Truncated octahedron.png| |tO-image2=Truncatedoctahedron.jpg| |tO-image3=Truncatedoctahedron.gif| |tO-dimage=Tetrakishexahedron.jpg| |tO-vfigimage=Truncated octahedron vertfig.png|tO-netimage=Truncated Octahedron Net.svg| |tO-vfig=4.6.6| |tO-Wythoff=2 4 | 3
3 3 2 || |tO-W=7|tO-U=08|tO-K=13|tO-C=20| |tO-V=24|tO-E=36|tO-F=14|tO-Fdetail=6{4}+8{6}| |tO-chi=2|tO-group=Oh
and Th| |tO-B=Toe| |tO-special=zonohedron
permutohedron| |tO-schl=t0,1{3,4}
t0,1,2{3,3}|tO-schl2=and | |tO-dual=Tetrakis hexahedron| |tO-CD=
|tC-name=Truncated cube| |tC-altname1=Truncated hexahedron| |tC-image=Truncated hexahedron.png| |tC-image2=Truncatedhexahedron.jpg| |tC-image3=Truncatedhexahedron.gif| |tC-dimage=Triakisoctahedron.jpg| |tC-vfigimage=Truncated cube vertfig.png|tC-netimage=Truncated hexahedron flat.svg| |tC-vfig=3.8.8| |tC-Wythoff=2 3 | 4| |tC-W=8|tC-U=09|tC-K=14|tC-C=21| |tC-V=24|tC-E=36|tC-F=14|tC-Fdetail=8{3}+6{8}| |tC-chi=2|tC-group=Oh| |tC-B=Tic| |tC-dual=Triakis octahedron|tC-schl=t{4,3}| |tC-special=| |tC-CD=
|tI-name=Truncated icosahedron| |tI-image=Truncated icosahedron.png| |tI-image2=Truncatedicosahedron.jpg| |tI-image3=Truncatedicosahedron.gif| |tI-dimage=Pentakisdodecahedron.jpg| |tI-vfigimage=Truncated icosahedron vertfig.png|tI-netimage=Truncated icosahedron flat.png| |tI-vfig=5.6.6| |tI-Wythoff=2 5 | 3| |tI-W=9|tI-U=25|tI-K=30|tI-C=27| |tI-V=60|tI-E=90|tI-F=32|tI-Fdetail=12{5}+20{6}| |tI-chi=2|tI-group=Ih| |tI-B=Ti| |tI-dual=Pentakis dodecahedron|tI-schl=t{3,5}| |tI-special=| |tI-CD=
|tD-name=Truncated dodecahedron| |tD-image=Truncated dodecahedron.png| |tD-image2=Truncateddodecahedron.jpg| |tD-image3=Truncateddodecahedron.gif| |tD-dimage=Triakisicosahedron.jpg| |tD-vfigimage=Truncated dodecahedron vertfig.png|tD-netimage=Truncated dodecahedron flat.png| |tD-vfig=3.10.10| |tD-Wythoff=2 3 | 5| |tD-W=10|tD-U=26|tD-K=31|tD-C=29| |tD-V=60|tD-E=90|tD-F=32|tD-Fdetail=20{3}+12{10}| |tD-chi=2|tD-group=Ih| |tD-B=Tid| |tD-dual=Triakis icosahedron|tD-schl=t{5,3}| |tD-special=| |tD-CD=
|CO-name=Cuboctahedron| |CO-image=Cuboctahedron.png| |CO-image2=Cuboctahedron.svg| |CO-image3=Cuboctahedron.gif| |CO-dimage=Rhombicdodecahedron.jpg| |CO-vfigimage=Cuboctahedron_vertfig.png|CO-netimage=Cuboctahedron flat.svg| |CO-vfig=3.4.3.4| |CO-Wythoff=2 | 3 4
3 3 | 2| |CO-W=11|CO-U=07|CO-K=12|CO-C=19| |CO-V=12|CO-E=24|CO-F=14|CO-Fdetail=8{3}+6{4}| |CO-chi=2|CO-group=Oh
and Th| |CO-B=Co|CO-special=quasiregular| |CO-dual=Rhombic dodecahedron|CO-schl=t1{4,3}
t0,2{3,3}| |CO-CD=
|ID-name=Icosidodecahedron| |ID-image=Icosidodecahedron.png| |ID-image2=Icosidodecahedron.jpg| |ID-image3=Icosidodecahedron.gif| |ID-dimage=Rhombictriacontahedron.svg| |ID-vfigimage=Icosidodecahedron_vertfig.png|ID-netimage=Icosidodecahedron_flat.png| |ID-vfig=3.5.3.5| |ID-Wythoff=2 | 3 5| |ID-W=12|ID-U=24|ID-K=29|ID-C=28| |ID-V=30|ID-E=60|ID-F=32|ID-Fdetail=20{3}+12{5}| |ID-chi=2|ID-group=Ih| |ID-B=Id||ID-special=quasiregular| |ID-dual=Rhombic triacontahedron|ID-schl=| |ID-CD=
|grCO-name=Great rhombicuboctahedron
or truncated cuboctahedron| |grCO-image=Great rhombicuboctahedron.png| |grCO-image2=Truncatedcuboctahedron.jpg| |grCO-image3=Truncatedcuboctahedron.gif| |grCO-dimage=Disdyakisdodecahedron.jpg| |grCO-vfigimage=Great rhombicuboctahedron vertfig.png|grCO-netimage=Truncated cuboctahedron flat.svg| |grCO-vfig=4.6.8| |grCO-altname1=Rhombitruncated cuboctahedron| |grCO-altname2=Truncated cuboctahedron| |grCO-Wythoff=2 3 4 | | |grCO-W=15|grCO-U=11|grCO-K=16|grCO-C=23| |grCO-V=48|grCO-E=72|grCO-F=26|grCO-Fdetail=12{4}+8{6}+6{8}| |grCO-chi=2|grCO-group=Oh| |grCO-B=Girco|grCO-special=zonohedron|grCO-schl=| |grCO-dual=Disdyakis dodecahedron| |grCO-CD=
|grID-name=Great rhombicosidodecahedron
or truncated icosadodecahedron| |grID-image=Great rhombicosidodecahedron.png| |grID-image2=Truncatedicosidodecahedron.jpg| |grID-image3=Truncatedicosidodecahedron.gif| |grID-dimage=Disdyakistriacontahedron.jpg| |grID-vfigimage=Great rhombicosidodecahedron vertfig.png|grID-netimage=Truncated icosidodecahedron flat.png| |grID-vfig=4.6.10| |grID-altname1=Rhombitruncated icosidodecahedron| |grID-altname2=Truncated icosidodecahedron| |grID-Wythoff=2 3 5 | | |grID-W=16|grID-U=28|grID-K=33|grID-C=31| |grID-V=120|grID-E=180|grID-F=62|grID-Fdetail=30{4}+20{6}+12{10}| |grID-chi=2|grID-group=Ih| |grID-B=Grid|grID-special=zonohedron|grID-schl=| |grID-dual=Disdyakis triacontahedron| |grID-CD=
|lrCO-name=Rhombicuboctahedron| |lrCO-altname1=Rhombicuboctahedron| |lrCO-image=Small rhombicuboctahedron.png| |lrCO-image2=Rhombicuboctahedron.jpg| |lrCO-image3=Rhombicuboctahedron.gif| |lrCO-dimage=Deltoidalicositetrahedron.jpg| |lrCO-vfigimage=Small rhombicuboctahedron vertfig.png|lrCO-netimage=Rhombicuboctahedron flat.png| |lrCO-vfig=3.4.4.4| |lrCO-Wythoff=3 4 | 2| |lrCO-W=13|lrCO-U=10|lrCO-K=15|lrCO-C=22| |lrCO-V=24|lrCO-E=48|lrCO-F=26|lrCO-Fdetail=8{3}+(6+12){4}|lrCO-chi=2| |lrCO-group=Oh| |lrCO-B=Sirco| |lrCO-dual=Deltoidal icositetrahedron| |lrCO-special=|lrCO-schl=| |lrCO-CD=
|lrID-name=Rhombicosidodecahedron| |lrID-image=Small rhombicosidodecahedron.png| |lrID-image2=Rhombicosidodecahedron.jpg| |lrID-image3=Rhombicosidodecahedron.gif| |lrID-dimage=Deltoidalhexecontahedron.jpg| |lrID-altname1=Rhombicosidodecahedron|lrID-netimage=Rhombicosidodecahedron flat.png| |lrID-vfig=3.4.5.4| |lrID-vfigimage=Small rhombicosidodecahedron vertfig.png| |lrID-Wythoff=3 5 | 2| |lrID-W=14|lrID-U=27|lrID-K=32|lrID-C=30| |lrID-V=60|lrID-E=120|lrID-F=62|lrID-Fdetail=20{3}+30{4}+12{5}| |lrID-chi=2|lrID-group=Ih| |lrID-B=Srid| |lrID-dual=Deltoidal hexecontahedron| |lrID-special=|lrID-schl=| |lrID-CD=
|nCO-name=Snub cube| |nCO-image=Snub hexahedron.png| |nCO-image2=Snubhexahedroncw.jpg| |nCO-image3=Snubhexahedroncw.gif| |nCO-dimage=Pentagonalicositetrahedronccw.jpg| |nCO-vfigimage=Snub cube vertfig.png|nCO-netimage=Snub cube flat.png| |nCO-vfig=3.3.3.3.4| |nCO-Wythoff=| 2 3 4| |nCO-W=17|nCO-U=12|nCO-K=17|nCO-C=24| |nCO-V=24|nCO-E=60|nCO-F=38| |nCO-Fdetail=(8+24){3}+6{4}| |nCO-chi=2|nCO-group=O| |nCO-B=Snic|nCO-special=chiral| |nCO-dual=Pentagonal icositetrahedron| |nCO-special=chiral|nCO-schl=| |nCO-CD=
|nID-name=Snub dodecahedron| |nID-image=Snub dodecahedron ccw.png| |nID-image2=Snubdodecahedronccw.jpg| |nID-image3=Snubdodecahedronccw.gif| |nID-dimage=Pentagonalhexecontahedronccw.jpg| |nID-vfigimage=Snub dodecahedron vertfig.png|nID-netimage=Snub dodecahedron flat.svg| |nID-vfig=3.3.3.3.5| |nID-Wythoff=| 2 3 5| |nID-W=18|nID-U=29|nID-K=34|nID-C=32| |nID-V=60|nID-E=150|nID-F=92| |nID-Fdetail=(20+60){3}+12{5}| |nID-chi=2|nID-group=I| |nID-B=Snid|nID-special=chiral|nID-schl=| |nID-dual=Pentagonal hexecontahedron| |nID-CD=
}}