Talk:Semiotic square

From Wikipedia, the free encyclopedia

Is Greimas's square really derived from the Aristotelian square? The example's logical structure is instead that of the Boolean square of opposition.

A E
I O

Aristotelian: A & E can't both be true. I & O can't both be false. So there are 8 distinct options for compounding: A, I, E, O, A-or-E, I-&-O, T, & F.

Boolean: A & E can both be true. I & O can both be false. And 16 distinct options are produced for compounding.

The example:

masc. fem.
~fem. ~masc.

allows the Boolean-style square's full 16-fold of resultant distinct options, not merely the Aristotelian 8. It makes no difference if you arrange it like so,

masc. ~fem.
fem. ~masc.

you still get 16:

Example's semiotic square's options for compoundings:
strictly masc. or strictly fem. masc. & ~fem.
(strictly masc.)
fem. & ~masc.
(strictly fem.)
masc. & ~masc.
(or {fem. & ~fem.}, etc.) 
(tautologously false)
masc. or fem. or both
(not neuter)
masc. fem. masc. & fem. (hermaphrodite)
~fem. or ~masc. or both
(not hermaphrodite)
~fem. ~masc. ~masc. & ~fem. (neuter)
masc. or ~masc.
(and {fem. or ~fem.}, etc.)
(tautologously true)
masc. or ~fem. or both
(not strictly fem.)
fem. or ~masc. or both
(not strictly masc.)
neuter or hermaphrodite

The Tetrast 15:35, 1 September 2007 (UTC)