Talk:Semiotic square
From Wikipedia, the free encyclopedia
Is Greimas's square really derived from the Aristotelian square? The example's logical structure is instead that of the Boolean square of opposition.
A | E |
I | O |
Aristotelian: A & E can't both be true. I & O can't both be false. So there are 8 distinct options for compounding: A, I, E, O, A-or-E, I-&-O, T, & F.
Boolean: A & E can both be true. I & O can both be false. And 16 distinct options are produced for compounding.
The example:
masc. | fem. |
~fem. | ~masc. |
allows the Boolean-style square's full 16-fold of resultant distinct options, not merely the Aristotelian 8. It makes no difference if you arrange it like so,
masc. | ~fem. |
fem. | ~masc. |
you still get 16:
Example's semiotic square's options for compoundings: | |||
strictly masc. or strictly fem. | masc. & ~fem. (strictly masc.) |
fem. & ~masc. (strictly fem.) |
masc. & ~masc. (or {fem. & ~fem.}, etc.) (tautologously false) |
masc. or fem. or both (not neuter) |
masc. | fem. | masc. & fem. (hermaphrodite) |
~fem. or ~masc. or both (not hermaphrodite) |
~fem. | ~masc. | ~masc. & ~fem. (neuter) |
masc. or ~masc. (and {fem. or ~fem.}, etc.) (tautologously true) |
masc. or ~fem. or both (not strictly fem.) |
fem. or ~masc. or both (not strictly masc.) |
neuter or hermaphrodite |
The Tetrast 15:35, 1 September 2007 (UTC)