Segmentation based object categorization
From Wikipedia, the free encyclopedia
The image segmentation problem is concerned with partitioning an image into multiple regions according to some homogeneity criterion. This article is primarily concerned with graph theoretic approaches to image segmentation.
Contents |
[edit] Applications of Image Segmentation
- Image Compression
- Segment the image into homogeneous components, and use the most suitable compression algorithm for each component to improve compression.
- Medical Diagnosis
- Automatic segmentation of MRI images for identification of cancerous regions.
- Mapping and Measurement
- Automatic analysis of remote sensing data from satellites to identify and measure regions of interest.
[edit] Segmentation using Normalized Cuts
[edit] Graph theoretic formulation
The set of points in an arbitrary feature space can be represented as a weighted undirected complete graph G = (V, E), where the nodes of the graph are the points in the feature space. The weight wij of an edge is a function of the similarity between the nodes i and j. In this context, we can formulate the image segmentation problem as a graph partitioning problem that asks for a partition of the vertex set V, where, according to some measure, the vertices in any set Vi have high similarity, and the vertices in two different sets Vi,Vj have low similarity.
[edit] Normalized Cuts
Let G = (V, E) be a weighted graph. Let A and B be two subsets of vertices.
Let:
In the normalized cuts approach[1], for any cut in G, measures the similarity between different parts, and measures the total similarity of vertices in the same part.
Since , a cut that minimizes also maximizes .
Computing a cut that minimizes is an NP-hard problem. However, we can find in polynomial time a cut of small normalized weight using spectral techniques.
[edit] The Ncut Algorithm
Let D be an diagonal matrix with d on the diagonal, and let W be an symmetrical matrix with Wij = wij.
After some algebraic manipulations, we get:
subject to the constraints:
- , for some constant − b
- ytD1 = 0
Minimizing subject to the constraints above is NP-hard. To make the problem tractable, we relax the constraints on y, and allow it to take real values. The relaxed problem can be solved by solving the generalized eigenvalue problem (D − W)y = λDyfor the second smallest generalized eigenvector.
The partitioning algorithm:
- Given a set of features, set up a weighted graph G = (V,E), compute the weight of each edge, and summarize the information in D and W.
- Solve (D − W)y = λDy for eigenvectors with the smallest eigenvalues.
- Use the eigenvector with the smallest eigenvalue to bipartition the graph.
- Decide if the current partition should be subdivided.
- Recursively partition the segmented parts, if necessary.
[edit] Example
Figures 1-7 exemplify the Ncut algorithm.
[edit] Limitations
Solving a standard eigenvalue problem for all eigenvectors (using the QR algorithm, for instance) takes O(n3) time. This is impractical for image segmentation applications where n is the number of pixels in the image.
[edit] OBJ CUT
OBJ CUT[2] is an efficient method that automatically segments an object. The OBJ CUT method is a generic method, and therefore it is applicable to any object category model. Given an image D containing an instance of a known object category, e.g. cows, the OBJ CUT algorithm computes a segmentation of the object, that is, it infers a set of labels m.
Let m be a set of binary labels, and let Θ be a shape parameter(Θ is a shape prior on the labels from a Layered Pictorial Structure (LPS) model). We define an energy function E(m,Θ) as follows.
(1)
The term φx(D | mx) + φx(mx | Θ) is called a unary term, and the term Ψxy(mx,my) + φ(D | mx,my) is called a pairwise term. An unary term consists of the likelihood φx(D | mx) based on color, and the unary potential φx(mx | Θ) based on the distance from Θ. A pairwise term consists of a prior Ψxy(mx,my) and a contrast term φ(D | mx,my).
The best labeling m * minimizes , where wi is the weight of the parameter Θi.
(2)
[edit] The OBJ CUT algorithm
- Given an image D, an object category is chosen, e.g. cows or horses.
- The corresponding LPS model is matched to D to obtain the samples
- The objective function given by equation (2) is determined by computing E(m,Θi) and using wi = g(Θi | Z)
- The objective function is minimized using a single MINCUT operation to obtain the segmentation m.
[edit] Example
Figures 8-11 exemplify the OBJ CUT algorithm.
[edit] Other approaches
[edit] References
- ^ Jianbo Shi and Jitendra Malik (1997): "Normalized Cuts and Image Segmentation", IEEE Conference on Computer Vision and Pattern Recognition, pp 731-737
- ^ M. P. Kumar, P. H. S. Torr, and A. Zisserman. Obj cut. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Diego, pages 18-25, 2005.
- ^ E. Borenstein, S. Ullman: Class-specic, top-down segmentation. In Proceedings of the 7th European Conference on Computer Vision, Copenhagen, Denmark, pages 109-124, 2002.
- ^ Z. Tu, X. Chen, A. L. Yuille, S. C. Zhu: Image Parsing: Unifying Segmentation, Detection, and Recognition. Toward Category-Level Object Recognition 2006: 545-576
- ^ B. Leibe, A. Leonardis, B. Schiele: An Implicit Shape Model for Combined Object Categorization and Segmentation. Toward Category-Level Object Recognition 2006: 508-524
- ^ J. Winn, N. Joijic. Locus: Learning object classes with unsupervised segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Beijing, 2005.
- ^ J. M. Winn, J. Shotton: The Layout Consistent Random Field for Recognizing and Segmenting Partially Occluded Objects. CVPR (1) 2006: 37-44