SDPR
From Wikipedia, the free encyclopedia
Serum deprivation response (phosphatidylserine binding protein)
|
|||||||||||
Identifiers | |||||||||||
Symbol(s) | SDPR; PS-p68; SDR | ||||||||||
External IDs | OMIM: 606728 MGI: 99513 HomoloGene: 3422 | ||||||||||
|
|||||||||||
RNA expression pattern | |||||||||||
Orthologs | |||||||||||
Human | Mouse | ||||||||||
Entrez | 8436 | 20324 | |||||||||
Ensembl | ENSG00000168497 | ENSMUSG00000045954 | |||||||||
Uniprot | O95810 | Q63918 | |||||||||
Refseq | NM_004657 (mRNA) NP_004648 (protein) |
NM_138741 (mRNA) NP_620080 (protein) |
|||||||||
Location | Chr 2: 192.41 - 192.42 Mb | Chr 1: 51.23 - 51.25 Mb | |||||||||
Pubmed search | [1] | [2] |
Serum deprivation response (phosphatidylserine binding protein), also known as SDPR, is a human gene.[1]
This gene encodes a calcium-independent phospholipid-binding protein whose expression increases in serum-starved cells. This protein has also been shown to be a substrate for protein kinase C (PKC) phosphorylation.[1]
[edit] References
[edit] Further reading
- Burgener R, Wolf M, Ganz T, Baggiolini M (1990). "Purification and characterization of a major phosphatidylserine-binding phosphoprotein from human platelets.". Biochem. J. 269 (3): 729–34. PMID 2390065.
- Cross SH, Charlton JA, Nan X, Bird AP (1994). "Purification of CpG islands using a methylated DNA binding column.". Nat. Genet. 6 (3): 236–44. doi: . PMID 8012384.
- Gustincich S, Schneider C (1993). "Serum deprivation response gene is induced by serum starvation but not by contact inhibition.". Cell Growth Differ. 4 (9): 753–60. PMID 8241023.
- Mineo C, Ying YS, Chapline C, et al. (1998). "Targeting of protein kinase Calpha to caveolae.". J. Cell Biol. 141 (3): 601–10. PMID 9566962.
- Gustincich S, Vatta P, Goruppi S, et al. (1999). "The human serum deprivation response gene (SDPR) maps to 2q32-q33 and codes for a phosphatidylserine-binding protein.". Genomics 57 (1): 120–9. doi: . PMID 10191091.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi: . PMID 12477932.
- Gevaert K, Goethals M, Martens L, et al. (2004). "Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides.". Nat. Biotechnol. 21 (5): 566–9. doi: . PMID 12665801.
- Brandenberger R, Wei H, Zhang S, et al. (2005). "Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation.". Nat. Biotechnol. 22 (6): 707–16. doi: . PMID 15146197.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi: . PMID 15489334.
- Hillier LW, Graves TA, Fulton RS, et al. (2005). "Generation and annotation of the DNA sequences of human chromosomes 2 and 4.". Nature 434 (7034): 724–31. doi: . PMID 15815621.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network.". Nature 437 (7062): 1173–8. doi: . PMID 16189514.