SARS (gene)

From Wikipedia, the free encyclopedia


Seryl-tRNA synthetase
Identifiers
Symbol(s) SARS; FLJ36399; SERRS; SERS
External IDs OMIM: 607529 MGI102809 HomoloGene4751
RNA expression pattern

More reference expression data

Orthologs
Human Mouse
Entrez 6301 20226
Ensembl ENSG00000031698 ENSMUSG00000068739
Uniprot P49591 Q3U6F6
Refseq NM_006513 (mRNA)
NP_006504 (protein)
NM_011319 (mRNA)
NP_035449 (protein)
Location Chr 1: 109.56 - 109.58 Mb Chr 3: 108.55 - 108.57 Mb
Pubmed search [1] [2]

Seryl-tRNA synthetase, also known as SARS, is a human gene.[1]

This gene belongs to the class II amino-acyl tRNA family. The encoded enzyme catalyzes the transfer of L-serine to tRNA (Ser) and is related to bacterial and yeast counterparts.[1]

[edit] References

[edit] Further reading

  • Härtlein M, Cusack S (1995). "Structure, function and evolution of seryl-tRNA synthetases: implications for the evolution of aminoacyl-tRNA synthetases and the genetic code.". J. Mol. Evol. 40 (5): 519–30. PMID 7540217. 
  • Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.". Gene 138 (1-2): 171–4. PMID 8125298. 
  • Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.". Gene 200 (1-2): 149–56. PMID 9373149. 
  • Vincent C, Tarbouriech N, Härtlein M (1998). "Genomic organization, cDNA sequence, bacterial expression, and purification of human seryl-tRNA synthase.". Eur. J. Biochem. 250 (1): 77–84. PMID 9431993. 
  • Heckl M, Busch K, Gross HJ (1998). "Minimal tRNA(Ser) and tRNA(Sec) substrates for human seryl-tRNA synthetase: contribution of tRNA domains to serylation and tertiary structure.". FEBS Lett. 427 (3): 315–9. PMID 9637248. 
  • Shah ZH, Toompuu M, Hakkinen T, et al. (2001). "Novel coding-region polymorphisms in mitochondrial seryl-tRNA synthetase (SARSM) and mitoribosomal protein S12 (RPMS12) genes in DFNA4 autosomal dominant deafness families.". Hum. Mutat. 17 (5): 433–4. doi:10.1002/humu.1123. PMID 11317363. 
  • Shimada N, Suzuki T, Watanabe K (2002). "Dual mode recognition of two isoacceptor tRNAs by mammalian mitochondrial seryl-tRNA synthetase.". J. Biol. Chem. 276 (50): 46770–8. doi:10.1074/jbc.M105150200. PMID 11577083. 
  • Rigler R, Cronvall E, Hirsch R, et al.. "Interactions of seryl-tRNA synthetase with serine and phenylalanine specific tRNA." 11 (5): 320–323. PMID 11945516. 
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMID 12477932. 
  • Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039. 
  • Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMID 15489334. 
  • Ewing RM, Chu P, Elisma F, et al. (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry.". Mol. Syst. Biol. 3: 89. doi:10.1038/msb4100134. PMID 17353931.