User:Salix alba/Jonathan Bowers

From Wikipedia, the free encyclopedia

Jonathan Bowers (November 27, 1969) is an amateur mathematician known for his work on polychora (higher-dimensional analogues of polyhedra), and on the representation of very large numbers. He sometimes refers to himself as Hedrondude or Dimension dude.

Contents

[edit] Polychora

Bowers is one of the participants in the Uniform Polychora Project, an attempt to name higher-dimensional polychora, higher dimensional analogues of uniform polyhedra. He independently began his search for polychora in 1990. Circa 1993, he invented his short names for the uniform polyhedra and polychora, which have come to be known as the Bowers style acronyms (or pet name). In 1997, he contacted others who are also interested in the subject, such as Magnus Wenninger, Vincent Matsko, and George Olshevsky.

[edit] Illion group

Bowers has also invented names for very large numbers that extend the -illion family in names of large numbers.

Name Short scale value
Million 106, not coined by Bowers.
Deciliion 1033, not coined by Bowers.
Vigintillion 1063, not coined by Bowers.
Trigintillion 1093, not coined by Bowers.
Googol 10100, not coined by Bowers.
Quadragintillion 10123
Quinquagintillion 10153
Sexagintillion 10183
Septuagintillion 10213
Octogintillion 10243
Nonagintillion 10273
Centillion 10303, not coined by Bowers.
Cenuntillion 10306
Duocentillion 10309
Centretillion 10312
Ducentillion 10603
Trecentillion 10903
Quadringentillion 101203
Quingentillion 101503
Sescentillion 101803
Septingentillion 102103
Octingentillion 102403
Nongentillion 102703
Millillion 10^{3003}=10^{3*10^3+3}
Platillion 106000
Myrillion 1030003
Micrillion 10^{3000003}=10^{3*10^6+3}
Nanillion 10^{3\ \mathrm{billion}+3}=10^{3*10^9+3}
Picillion 10^{3\ \mathrm{trillion}+3}=10^{3*10^{12}+3}
Femtillion 10^{3\ \mathrm{quadrillion}+3}=10^{3*10^{15}+3}
Attillion 10^{3\ \mathrm{quintillion}+3}=10^{3*10^{18}+3}
Zeptillion 10^{3\ \mathrm{sextillion}+3}=10^{3*10^{21}+3}
Yoctillion 10^{3\ \mathrm{septillion}+3}=10^{3*10^{24}+3}
Xonillion 10^{3\ \mathrm{octillion}+3}=10^{3*10^{27}+3}
Vecillion 10^{3\ \mathrm{nonillion}+3}=10^{3*10^{30}+3}
Mecillion 10^{3\ \mathrm{decillion}+3}=10^{3*10^{33}+3}
Duecillion 10^{3\ \mathrm{undecillion}+3}=10^{3*10^{36}+3}
Trecillion 10^{3\ \mathrm{duodecillion}+3}=10^{3*10^{39}+3}
Tetrecillion 10^{3\ \mathrm{tredecillion}+3}=10^{3*10^{42}+3}
Pentecillion 10^{3\ \mathrm{quattuordecillion}+3}=10^{3*10^{45}+3}
Hexecillion 10^{3\ \mathrm{quindecillion}+3}=10^{3*10^{48}+3}
Heptecillion 10^{3\ \mathrm{sexdecillion}+3}=10^{3*10^{51}+3}
Octecillion 10^{3\ \mathrm{septendecillion}+3}=10^{3*10^{54}+3}
Ennecillion 10^{3\ \mathrm{octodecillion}+3}=10^{3*10^{57}+3}
Icosillion 10^{3\ \mathrm{novemdecillion}+3}=10^{3*10^{60}+3}
Triacontillion 10^{3*10^{90}+3}
Googolplex 10^{10^{100}}, not coined by Bowers.
Tetracontillion 10^{3*10^{120}+3}
Pentacontillion 10^{3*10^{150}+3}
Hexacontillion 10^{3*10^{180}+3}
Heptacontillion 10^{3*10^{210}+3}
Octacontillion 10^{3*10^{240}+3}
Ennacontillion 10^{3*10^{270}+3}
Hectillion 10^{3*10^{300}+3}
Killillion 10^{3*10^{3000}+3}
Megillion 10^{3*10^{3\ \mathrm{million} }+3}=10^{3*10^{3*10^6}+3}
Gigillion 10^{3*10^{3\ \mathrm{billion}}+3}=10^{3*10^{3*10^9}+3}
Terillion 10^{3*10^{3\ \mathrm{trillion} }+3}=10^{3*10^{3*10^{12}}+3}
Petillion 10^{3*10^{3\ \mathrm{quadrillion} }+3}=10^{3*10^{3*10^{15}}+3}
Exillion 10^{3*10^{3\ \mathrm{quintillion} }+3}=10^{3*10^{3*10^{18}}+3}
Zettillion 10^{3*10^{3\ \mathrm{sextillion} }+3}=10^{3*10^{3*10^{21}}+3}
Yottillion 10^{3*10^{3\ \mathrm{septillion} }+3}=10^{3*10^{3*10^{24}}+3}
Xennillion 10^{3*10^{3\ \mathrm{octillion} }+3}=10^{3*10^{3*10^{27}}+3}
Vekillion 10^{3*10^{3\ \mathrm{nonillion} }+3}=10^{3*10^{3*10^{30}}+3}
Mekillion 10^{3*10^{3\ \mathrm{decillion} }+3}=10^{3*10^{3*10^{33}}+3}
Duekillion 10^{3*10^{3\ \mathrm{undecillion} }+3}=10^{3*10^{3*10^{36}}+3}
Trekillion 10^{3*10^{3\ \mathrm{duodecillion} }+3}=10^{3*10^{3*10^{39}}+3}
Tetrekillion 10^{3*10^{3\ \mathrm{tredecillion} }+3}=10^{3*10^{3*10^{42}}+3}
Pentekillion 10^{3*10^{3\ \mathrm{quattuordecillion} }+3}=10^{3*10^{3*10^{45}}+3}
Hexekillion 10^{3*10^{3\ \mathrm{quindecillion} }+3}=10^{3*10^{3*10^{48}}+3}
Heptekillion 10^{3*10^{3\ \mathrm{sexdecillion} }+3}=10^{3*10^{3*10^{51}}+3}
Octekillion 10^{3*10^{3\ \mathrm{septendecillion} }+3}=10^{3*10^{3*10^{54}}+3}
Ennekillion 10^{3*10^{3\ \mathrm{octodecillion} }+3}=10^{3*10^{3*10^{57}}+3}
Twentillion 10^{3*10^{3*10^{60}} +3}
Triatwentillion 10^{3*10^{3*10^{69}} +3}
Icterillion 10^(3x10^(3x10^72) +3)
Icpetillion 10^(3x10^(3x10^75) +3)
Ikectillion 10^(3x10^(3x10^78) +3)
Iczetillion 10^(3x10^(3x10^81) +3)
Ikyotillion 10^(3x10^(3x10^84) +3)
Icxenillion 10^(3x10^(3x10^87) +3)
Thirtillion 10^{3*10^{3*10^{90}}+3}
Googolduplex or Googolplexian 10^{10^{10^{100}}}, not coined by Bowers.
Fortillion 10^{3*10^{3*10^{120}}+3}
Fiftillion 10^{3*10^{3*10^{150}}+3}
Sixtillion 10^{3*10^{3*10^{180}}+3}
Seventillion 10^{3*10^{3*10^{210}}+3}
Eightillion 10^{3*10^{3*10^{240}}+3}
Nintillion 10^{3*10^{3*10^{270}}+3}
Hundrillion 10^{3*10^{3*10^{300}}+3}
Botillion 10^(3x10^(3x10^600) +3)
Trotillion 10^(3x10^(3x10^900) +3)
Totillion 10^(3x10^(3x10^1200) +3)
Potillion 10^(3x10^(3x10^1500) +3)
Exotillion 10^(3x10^(3x10^1800) +3)
Zotillion 10^(3x10^(3x10^2100) +3)
Yootillion 10^(3x10^(3x10^2400) +3)
Notillion 10^(3x10^(3x10^2700) +3)
Thousillion 10^{3*10^{3*10^{3000}}+3}
Dalillion 10^(3x10^(3x10^6000) +3)
Tralillion 10^(3x10^(3x10^9000) +3)
Talillion 10^(3x10^(3x10^12,000) +3)
Palillion 10^(3x10^(3x10^15,000) +3)
Exalillion 10^(3x10^(3x10^18,000) +3)
Zalillion 10^(3x10^(3x10^21,000) +3)
Yalillion 10^(3x10^(3x10^24,000) +3)
Nalillion 10^(3x10^(3x10^27,000) +3)
Manillion 10^(3*10^ (3*10^30,000) +3)
Lakhillion 10^(3*10^ (3*10^300,000) +3)
Mejillion 10^(3x10^(3x10^3,000,000) +3)
Crorillion 10^(3*10^ (3*10^30,000,000) +3)
Awkillion 10^(3*10^ (3*10^300,000,000) +3)
Gijillion 10^(3x10^(3x10^3,000,000,000) +3)
Bentrizillion 10^(6*10^(6*10^(6*10^6billion)))
Astillion 10^(3x10^(3x10^3trillion) +3)
Lunillion 10^(3x10^(3x10^3quadrillion) +3)
Fermillion 10^(3x10^(3x10^3quintillion) +3)
Jovillion 10^(3x10^(3x10^3sextillion) +3)
Solillion 10^(3x10^(3x10^3septillion) +3)
Betillion 10^(3x10^(3x10^3octillion) +3)
Glocillion 10^(3x10^(3x10^3nonillion) +3)
Gaxillion 10^(3x10^(3x10^3decillion) +3)
Supillion 10^(3x10^(3x10^3undecillion) +3)
Versillion 10^(3x10^(3x10^3duodecillion) +3)
Multillion 10^(3x10^(3x10^3tredecillion) +3)
Googoltriplex 10^10^10^10^100
Googolquadriplex 10^10^10^10^10^100
Googolquinplex 10^10^10^10^10^10^100
Googolsexplex 10^10^10^10^10^10^10^100
Googolseptaplex 10^10^10^10^10^10^10^10^100
Googoloctaplex 10^10^10^10^10^10^10^10^10^100
Googolnonaplex 10^10^10^10^10^10^10^10^10^10^100
Googoldecaplex 10^10^10^10^10^10^10^10^10^10^10^100

[edit] Very large numbers

Bowers has proposed a series of names (including giggol, gaggol, geegol, goggol, tridecal, tetratri, dutritri, xappol, dimendecal, gongulus, trimentri, goppatoth, golapulus, golapulusplex, golapulusplux, big boowa and guapamonga) for extremely Large numbers, which he terms infinity scrapers (a pun on skyscraper), many of which are so large that they can only be expressed using a special set of extended mathematical notations which he has devised.

These notations are very similar to the hyper operators and Conway chained arrow notation, and rely on the tetration operator {\ ^{b}a = \atop {\ }} {{\underbrace{a^{a^{\cdot^{\cdot^{a}}}}}} \atop b}, and its higher order analogues: pentation, sexation, heptation. Some examples are:

  • \{a,b,1\} = a \{1\} b = a+b\;
  • \{a,b,2\} = a \{2\} b = a*b\;
  • \{a,b,3\} = a \{3\} b = a^b\;
  • \{a,b,4\} = a \{4\} b = \ ^{b}a a tetrated to b.
  • \{a,b,5\} = a \{5\} b = \ ^{\ ^{\ ^{\ ^a\cdot}\cdot}a}a - a pentated to b - a tetrated to itself b times.

[edit] Googol, giggol and gaggol groups

Jonathan Bowers defines the googol, giggol, and gaggol groups as being lower than the infinity scrapers. Here's a list of some numbers in these groups:

[edit] Infinity scrapers

Numbers higher than those in the Gaggol group are referred to by Jonathan Bowers as the infinity scrapers. These require four or more terms in the array notation to represent. An older notation represents four term arrays using multiple pairs of braces about the third term, thus extending the operator notation. Some of the rules for constructing these numbers include:

  • \{a,b,c,2\} = a \{\{c\}\}b\;
  • \{a,2,1,2\} = a \{\{1\}\}2 = a \{a\}a\;
  • \{a,3,1,2\} = a \{\{1\}\}3 = a \{a \{a\}a\}a\;
  • \{a,b,1,2\} = a \{\{1\}\}b = a \{a\ldots\{a\}\ldots a\}a\; - a expanded to b.
  • \{a,b,2,2\} = a \{\{2\}\}b\; - a expanded to itself b times.

Here's a list of the names of those numbers that are infinity scrapers:

Name Value
Googol 10^100: "roughly" 10 tetrated to 2 = 10^10
Googolplex 10^10^100: roughly 10 tetrated to 3 = 10^(10^10)
Googolduplex or Googolplexian 10^10^10^100: roughly 10 tetrated to 4
Googoltriplex 10^10^10^10^100: roughly 10 tetrated to 5
Googolquadriplex 10^10^10^10^10^100: roughly 10 tetrated to 6
Googolquinplex 10^10^10^10^10^10^100: roughly 10 tetrated to 7
Giggol {10,100,4} = 10 {4} 100: 10 tetrated to 100
Mega roughly 10 tetrated to 258
Giggolplex 10 {4} giggol: 10 tetrated to giggol
Tripent {5,5,5} = 5 {5} 5 = 5 {4} 5 {4} 5 {4} 5 {4} 5: 5 pentated to 5
Megaston roughly 10 pentated to 11
Gaggol {10,100,5} = 10 {5} 100: 10 pentated to 100
Gaggolplex 10 {5} gaggol = 10 {5} 10 {5} 100: 10 pentated to gaggol
Geegol {10,100,6}=10 {6} 100
Geegolplex {10,geegol, 6}
Trisept {7,7,7} = 7 {7} 7 (7 heptated to 7)
Gigol {10,100,7}
Gigolplex {10,gigol,7}
Goggol {10,100,8}
Goggolplex {10,goggol,8}
Gagol {10,100,9}
Gagolplex {10,gagol,9} + De pi waarde met de zwaveldioxide nitraat fosfaat bepaling Delta Q wortel in het kwardraad!
Loempia Chinees voedsel
Oempaloempia +1= Te veel
Name Value
Tridecal {10,10,10} = 10 {10} 10 = 10 decated to 10
Boogol {10,10,100} = 10 {100} 10
Moser's number ...
Boogolplex {10,10,boogol}
Graham's number roughly {3, 64, 1, 2}
Corporal {10,100,1,2}
Corporalplex {10,corporal,1,2}
Grand Tridecal {10,10,10,2}
Biggol {10,10,100,2}
Biggolplex {10,10,biggol,2}
Baggol {10,10,100,3},
Baggolplex {10,10,baggol,3}
Beegol {10,10,100,4}
Beegolplex {10,10,beegol,4}
Bigol {10,10,100,5}
Boggol {10,10,100,6}
Bagol {10,10,100,7}
Supertet {4,4,4,4}
Tetratri {3,3,3,3}
General {10,10,10,10}
Generalplex {10,10,10,general}
Troogol {10,10,10,100}
Troogolplex {10,10,10,troogol}
Triggol {10,10,10,100,2}
Triggolplex {10,10,10,triggol,2}
Pentatri {3,3,3,3,3}.
Traggol {10,10,10,100,3}
Traggolplex {10,10,10,traggol,3}.
Treegol {10,10,10,100,4}
Superpent {5,5,5,5,5}
Trigol {10,10,10,100,5}
Troggol {10,10,10,100,6}
Tragol {10,10,10,100,7}
Tragol {10,10,10,100,7}
Pentadecal {10,10,10,10,10}
Pentadecalplex {10,10,10,10,pentadecal}
Quadroogol {10,10,10,10,100}
Quadroogolplex {10,10,10,10,quadroogol}
Quadriggol {10,10,10,10,100,2}
Quadriggolplex {10,10,10,10,quadriggol,2}
Hexatri {3,3,3,3,3,3}.
Quadraggol {10,10,10,10,100,3}
Quadreegol {10,10,10,10,100,4}
Quadrigol {10,10,10,10,100,5}
Quadroggol {10,10,10,10,100,6}
Quadragol {10,10,10,10,100,7}
Superhex {6,6,6,6,6,6}.
Quintoogol {10,10,10,10,10,100}
Quintoogolplex {10,10,10,10,10,quintoogol}
Pentatri {3,3,3,3,3}
Hexatri {3,3,3,3,3,3}
Hexadecal {10,10,10,10,10,10}
Hexadecalplex {10,10,10,10,10,hexadecal}
Quintaggol {10,10,10,10,10,100,3}
Quinteegol {10,10,10,10,10,100,4}
Quintigol {10,10,10,10,10,100,5}
Heptatri {3,3,3,3,3,3,3}
Supersept {7,7,7,7,7,7,7}
Heptadecal {10,10,10,10,10,10,10}
Octadecal {10,10,10,10,10,10,10,10}
Ennadecal {10,10,10,10,10,10,10,10,10}
Superoct {8,8,8,8,8,8,8,8}
Superenn {9,9,9,9,9,9,9,9,9}
Sextoogol {10,10,10,10,10,10,100}
Septoogol {10,10,10,10,10,10,10,100}
Octoogol {10,10,10,10,10,10,10,10,100}
Iteral {10,10,10,10,10,10,10,10,10,10}
Ultatri {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
Iteralplex {10,10,10,10,10,10,...........,10,10,10} (iteral 10's)
Goobol {10,100 (1) 2} = {10,10,10,.....,10} - has 100 10's.
Dupertri {3,tritri (1) 2}.
Iteralplex) {10,iteral (1) 2}
Goobolplex {10,goobol (1) 2} and truperdecal = {10,duperdecal (1) 2}
Truperdecal {10,duperdecal (1) 2}
Quadruperdecal {10,truperdecal (1) 2}
Gibbol {10,100,2 (1) 2}
Latri {3,3,3 (1) 2}
Gabbol {10,100,3 (1) 2}
Geebol {10,100,4 (1) 2}
Gibol {10,100,5 (1) 2}
Gobbol {10,100,6 (1) 2}
Gabol {10,100,7 (1) 2}
Boobol {10,10,100,1 (1) 2} where n goes from 1 to 7
Bibbol {10,10,100,2 (1) 2}
Babbol {10,10,100,3 (1) 2}
Beebol {10,10,100,4 (1) 2}
Bibol {10,10,100,5 (1) 2}
Bobbol {10,10,100,6 (1) 2}
Babol {10,10,100,7 (1) 2}
Troobol {10,10,10,100,1 (1) 2}
Tribbol {10,10,10,100,2 (1) 2}
Treebol {10,10,10,100,3 (1) 2}
Tribol {10,10,10,100,5 (1) 2}
Trobbol {10,10,10,100,6 (1) 2}
Trabol {10,10,10,100,7 (1) 2}
Quadroobol {10,10,10,10,100,1 (1) 2}
Quadribbol {10,10,10,10,100,2 (1) 2}
Quadrabbol {10,10,10,10,100,3 (1) 2}
Quadreebol {10,10,10,10,100,4 (1) 2}
Quadribol {10,10,10,10,100,5 (1) 2}
Quadrobbol {10,10,10,10,100,6 (1) 2}
Quadrabol {10,10,10,10,100,7 (1) 2}
Quintoobol {10,10,10,10,10,100,1 (1) 2}
Quintibbol {10,10,10,10,10,100,2 (1) 2}
Quintabbol {10,10,10,10,10,100,3 (1) 2}
Quinteebol {10,10,10,10,10,100,4 (1) 2}
Quintibol {10,10,10,10,10,100,5 (1) 2}
Quintobbol {10,10,10,10,10,100,6 (1) 2}
Quintabol {10,10,10,10,10,100,7 (1) 2}
Gootrol {10,100 (1) 3}
Bootrol {10,10,100 (1) 3}
trootrol {10,10,10,100 (1) 3}
quadrootrol {10,10,10,10,100 (1) 3}.
Gooquadrol {10,100 (1) 4}
Booquadrol {10,10,100 (1) 4}
Gitrol {10,100,2 (1) 3}
Gatrol {10,100,3 (1) 3}
Geetrol {10,100,4 (1) 3}
Gietrol {10,100,5 (1) 3}
Gotrol {10,100,6 (1) 3}
Gaitrol {10,100,7 (1) 3}
Quadreequadrol {10,10,10,10,100 (1) 4}
Gooquintol {10,100 (1) 5}

The following numbers require an extended array notation to define. These are defined recursively, using rules such as:

\left\langle\begin{matrix}a&b\\2&\end{matrix}\right\rangle=\{a,a,\ldots,a\} with a repeated b times.
\left\langle\begin{matrix}a&b\\k&\end{matrix}\right\rangle=\left\langle\begin{matrix}a&a&\ldots&a\\k-1\end{matrix}\right\rangle with a repeated b times.

The last few numbers from the previous table are repeated to establish the notation.


Name Value
Emperal \left\langle\begin{matrix}10&10\\10&\end{matrix}\right\rangle
Emperalplex \left\langle\begin{matrix}10&10\\emperal&\end{matrix}\right\rangle
Gossol {10,10 (1) 100
Gossolplex {10,10 (1) gossol}
Gissol {10,10 (1) 100,2}
Gassol {10,10 (1) 100,3}
Geesol {10,10 (1) 100,4}
Gussol {10,10 (1) 100,5}
Hyperal \left\langle\begin{matrix}10&10\\10&10\end{matrix}\right\rangle
Hyperalplex \left\langle\begin{matrix}10&10\\10&Hyperal\end{matrix}\right\rangle
Mossol {10,10 (1) 10,100}
Mossolplex {10,10 (1) 10,mossol}
Missol {10,10 (1) 10,100,2}
Massol {10,10 (1) 10,100,3}
Meesol {10,10 (1) 10,100,4}
Mussol {10,10 (1) 10,100,5}
Bossol {10,10 (1) 10,10,100,1}
Bissol {10,10 (1) 10,10,100,2}
Bassol {10,10 (1) 10,10,100,3}
Beesol {10,10 (1) 10,10,100,4}
Bussol {10,10 (1) 10,10,100,5}
Trossol {10,10 (1) 10,10,10,100,1}
Trissol {10,10 (1) 10,10,10,100,2}
Trassol {10,10 (1) 10,10,10,100,3}
Treesol {10,10 (1) 10,10,10,100,4}
Trussol {10,10 (1) 10,10,10,100,5}
Diteral {10,10 (1)(1) 2} = {10,10,10,10,10,10,10,10,10,10 (1) 10,10,10,10,10,10,10,10,10,10}
Diteralplex Diteralplex = {10,diteral (1)(1) 2} = {10,10,......,10 (1) 10,10,......,10} - diteral 10's in each row.
Dubol {10,100 (1)(1) 2}
Dutrol {10,100 (1)(1) 3}
Duquadrol {10,100 (1)(1) 4}
Admiral {10,10 (1)(1) 10}
Dossol {10,10 (1)(1) 100}
Dossolplex = {10,10 (1)(1) dossol}.
Dutritri \left\langle\begin{matrix}3&3&3\\3&3&3\\3&3&3\end{matrix}\right\rangle
Dutridecal \left\langle\begin{matrix}10&10&10\\10&10&10\\10&10&10\end{matrix}\right\rangle
Xappol 10 by 10 array of 10's
Xappolplex xappol by xappol array of 10's
Grand xappol {10,10 (2) 3}
Dimentri 3 x 3 x 3 array of 3's
Colossal 10 x 10 x 10 array of 10's
Colossalplex colossal x colossal x colossal array of 10's
Terossol 10^4 & 10 = {10,10 (4) 2} - which is a 10 by 10 by 10 by 10 tesseract of tens.
Terossolplex terossol^4 & 10
Petossol a size 10 penteract of tens - a 10^5 array of tens that is.
Petossolplex a size petossol penteract of tens.
Ectossol the value of a size 10 hexeract (six dimensional cube) of tens.
Ectossolplex an ectossol size hexeract of tens.
Zettossol 10^n & 10 = {10,10 (7) 2}
Yottossol 10^n & 10 = {10,10 (8) 2}
Xennossol 10^n & 10 = {10,10 (9) 2}
Dimendecal 10x10x10x10x10x10x10x10x10x10 array of 10's
Gongulus 100 dimensional array of 10's (10^100 array that is)
Gongulusplex gongulus dimensional array of 10's (10^gongulus array)
Gingulus {10,100 (0,2) 2} = 100^100 array of D's where D is a 100^100 array of 10's
Trilatri {3,3 (0,3) 2} = {A (0,2) A (0,2) A (1,2) A (0,2) A (0,2) A (1,2) A (0,2) A (0,2) A (2,2) A (0,2) A (0,2) A (1,2) A (0,2) A (0,2) A (1,2) A (0,2) A (0,2) A (2,2) A (0,2) A (0,2) A (1,2) A (0,2) A (0,2) A (1,2) A (0,2) A (0,2) A} where A represents "3^3 & 3 (0,1) 3^3 & 3 (0,1) 3^3 & 3 (1,1) 3^3 & 3 (0,1) 3^3 & 3 (0,1) 3^3 & 3 (1,1) 3^3 & 3 (0,1) 3^3 & 3 (0,1) 3^3 & 3 (2,1) 3^3 & 3 (0,1) 3^3 & 3 (0,1) 3^3 & 3 (1,1) 3^3 & 3 (0,1) 3^3 & 3 (0,1) 3^3 & 3 (1,1) 3^3 & 3 (0,1) 3^3 & 3 (0,1) 3^3 & 3 (2,1) 3^3 & 3 (0,1) 3^3 & 3 (0,1) 3^3 & 3 (1,1) 3^3 & 3 (0,1) 3^3 & 3 (0,1) 3^3 & 3 (1,1) 3^3 & 3 (0,1) 3^3 & 3 (0,1) 3^3 & 3" - this is a size 3 - x^3x array of 3's.
Gangulus {10,100 (0,3) 2}
Gowngulus {10,100 (0,5) 2}
Gungulus {10,100 (0,6) 2} - which is a size 100 - x^6x array of 10's.
Bongulus {10,100 (0,0,1) 2)
Bingulus {10,100 (0,0,2) 2)
Bangulus {10,100 (0,0,1) 3)
Dulatri (3^3)^2 array of 3's
Trimentri 3^(3^3) array of 3's
Trongulus {10,100 (0,0,0,1) 2}
Quadrongulus {10,100 (0,0,0,0,1) 2}
Goplexulus {10,100 (0,0,0,.......,0,0,1) 2} - where there are 100 0's - this is a size 100 - x^x^100 array of 10's
Goduplexulus {10,100 ((100)1) 2} which is a size 100 - x^x^x^100 array of 10's - following is another trimensional array example: {3,3 (4,2 (1) 6,7 (1) 7,8 (2) 7,8,5) 2} - the (4,2 (1) 6....8,5) represents separations between two x^(4+2x+ (6+7x)x^x + (7+8x)x^2x + (7+8x+5x^2)x^x^2) structures.
Goppatoth 10 tetrated to 100 array of 10's
Goppatothplex {10,goppatoth,4} array of 10's
Gotriplexulus {10,100 ((0,0,0,....,0,0,1)1) 2 - with 100 0's - this is a size 100 - x^x^x^x^100 array of 10's.
Triakulus {3,3,3} & 3 = 3^^^3 array of 3's
Kungulus {10,100,3} & 10 = 10^^^100 array of tens.
Kungulusplex {10,kungulus,3) & 10 = 10^^^kungulus array of tens.
Quadrunculus {10,100,4} & 10 = 10^^^^100 array of tens
Tridecatrix {10,10,10} & 10 = 3 & 10 & 10 = 10^^^^^^^^^^10 array of tens
Humongulus {10,10,100} & 10 = 10^^^^^^^^^^^^`````^^^^10 (100 ^'s) array of tens.
Tridecatrix {10,10,10} array of 10's
Golapulus a "10^100 array of 10's" array of 10's.
Golapulusplex a * "10^100 array of tens" array of tens* array of tens.
Golapulusplux X{10,100,3},golapulusX
Big boowa X3, {X3,dutritriX, 2} X
Great big boowa X3,3,3X
Grand boowa {3,3,big boowa / 2}
Super gongulus a 10^100 exploded array of 10's (within X X that is!!)
Wompogulus 10^10 "100th level" exploded array of 10's
Wompogulusplex 10^10 "wompogulusth level" exploded array of 10's!!
Guapamonga 10^100 array of B's within "# #"
Guapamongaplex 10^100 array of B's within guapamonga-level "# #"
Big hoss {100,100 //////.......///// 2} - with 100 /'s.
Great big hoss {big hoss, big hoss /////.......///// 2} - with big hoss /'s
Meameamealokkapoowa {Not Defined Yet}
Meameamealokkapoowa Oompa {Not Defined Yet}
Oompaloompa candy Oompaloempa's OWNDEN DIKKK!
Loempiauilenfilet3bier Altijd 1 meer dan het aantal scherpe komkommerschijfjes sap in Bens cola
sambalfiletamercanenzureharing Die verdwijnen altijd in sanders aars dus je hebt der geen fuck aan

[edit] See also

[edit] External links

Nick je hébt gewoon een natte anus waar ik aan wil likken! :)