Rock microstructure
From Wikipedia, the free encyclopedia
Rock microstructure includes the texture of a rock and the small scale rock structures. The words "texture" and "microstructure" are interchangeable, with the latter preferred in modern geological literature. However, texture is still acceptable because it is a useful means of identifying the origin of rocks, how they formed, and their appearance.
Textures are penetrative fabrics of rocks; they occur throughout the entirety of the rock mass on a microscopic, hand specimen and often on an outcrop scale. This is similar in many ways to foliations, except a texture does not necessarily carry structural information in terms of deformation events and orientation information. Structures occur on hand-specimen scale and above.
Microstructure analysis describes the textural features of the rock, and can provide information on the conditions of formation, petrogenesis, and subsequent deformation, folding or alteration events.
Contents |
[edit] Sedimentary microstructures
Description of sedimentary rock microstructure aims to provide information on the conditions of deposition of the sediment, the paleo-environment, and the provenance of the sedimentary material.
Methods involve description of clast size, sorting, composition, rounding or angularity, sphericity and description of the matrix. Sedimentary microstructures, specifically, may include micoscopic analogs of larger sedimentary structural features such as cross-bedding, syn-sedimentary faults, sediment slumping, cross-stratification, etc.
[edit] Maturity
The maturity of a sediment is related not only to the sorting (mean grain size and deviations), but also to the fragment sphericity, rounding and composition. Quartz-only sands are more mature than arkose or greywacke.
[edit] Fragment shape
Fragment shape gives information on the length of sediment transport. The more rounded the clasts, the more water-worn they are, etcetera. Particle shape includes form and rounding. Form indicates whether a grain is more equant (round, spherical) or platy (flat, disc-like, oblate); as well as sphericity.
[edit] Roundness
Roundness refers to the degree of sharpness of the corners and edges of a grain. The surface texture of grains may be polished, frosted, or marked by small pits and scratches. This information can usually be seen best under a binocular microscope, not in a thin section.
[edit] Composition
Composition of the clasts can give clues as to the derivation of a rock's sediments. For instance, volcanic fragments, fragments of cherts, well-rounded sands all imply different sources.
[edit] Matrix and cement
The matrix of a sedimentary rock and the mineral cement (if any) holding it together are all diagnostic.
[edit] Diagenetic features
Usually diagenesis results in a weak bedding-plane foliation. Other effects can include flattening of grains, pressure dissolution and sub-grain deformation. Mineralogical changes may include zeolite or other authigenic minerals forming in low-grade metamorphic conditions.
[edit] Sorting
Sorting is used to describe the uniformity of grain sizes within a sedimentary rock. Understanding sorting is critical to making inferences on the degree of maturity and length of transport of a sediment. Sorting can be expressed mathematically by the standard deviation of the grain-size frequency curve of a sediment sample, expressed as values of φ (phi). Values range from <0.35φ (very well sorted) to >4.00φ (extremely poorly sorted).
[edit] Metamorphic microstructure
The study of metamorphic rock microstructures aims to determine the timing, sequence and conditions of deformations, mineral growth and overprinting of subsequent deformation events.
Metamorphic microstructures include textures formed by the development of foliation and overprinting of foliations causing crenulations. The relationship of porphyroblasts to the foliations and to other porphyroblasts can provide information on the order of formation of metamorphic assemblages or facies of minerals.
Shear textures are particularly suited to analysis by microstructural investigations, especially in mylonites and other highly disturbed and deformed rocks.
[edit] Foliations and crenulations
On the thin section and hand specimen scale a metamorphic rock may manifest a linear penetrative fabric called a foliation or a cleavage. Several foliations may be present in a rock, giving rise to a crenulation.
Identifying a foliation and its orientation is the first step in analysis of foliated metamorphic rocks. Gaining information on when the foliation formed is essential to reconstructing a P-T-t (pressure, temperature, time) path for a rock, as the relationship of a foliation to porphyroblasts is diagnostic of when the foliation formed, and the P-T conditions which existed at that time.
[edit] Ductile shear microstructures
Very distinctive textures form as a consequence of ductile shear. The microstructures of ductile shear zones are S-planes, C-planes and C' planes. S-planes or sissalement planes are parallel with the shear direction and are generally defined by micas or platy minerals. Define the flattened long-axis of the strain ellipse. C-planes or cissalement planes form oblique to the shear plane. The angle between the C and S planes is always acute, and defines the shear sense. Generally, the lower the C-S angle the greater the strain. The C' planes are rarely observed except in ultradeformed mylonites, and form nearly perpendicular to the S-plane.
Other microstructures which can give sense of shear include
- sigmoidal veins
- mica fish
- rotated porphyroblasts
[edit] Igneous microstructure
Analysis of igneous rock microstructure may complement descriptions on the hand specimen and outcrop scale. This is especially vital for describing phenocrysts and fragmental textures of tuffs, as often relationships between magma and phenocryst morphology are critical for analysing cooling, fractional crystallization and emplacement.
Analysis of intrusive rock microstructures can provide information on source and genesis, including contamination of igneous rocks by wall rocks and identifying crystals which may have been accumulated or dropped out of the melt. This is especially critical for komatiite lavas and ultramafic intrusive rocks.
[edit] General principles of igneous microstructure
Igneous microstructure is a combination of cooling rate, nucleation rate, eruption (if a lava), magma composition and its relationships to what minerals will nucleate, as well as physical effects of wall rocks, contamination and especially vapor.
[edit] Grain size
According to the size of the grains, igneous rocks may be classified as
- pegmatitic (very large grains),
- phaneritic rocks contain minerals with crystals visible to the unaided eye and are commonly intrusive
- aphanitic where cooling is rapid, crystal nucleation and growth is stunted, forming a uniform, fine grained rock, such as aplite
- porphyritic (containing phenocrysts in a fine groundmass)
- vesicular (voids caused by trapped gas while cooling)
- hyaline, vitreous or glassy
- pyroclastic rocks contain fragments of crystals, phenocrysts and rock fragments
[edit] Crystal shapes
Crystal shape is also an important factor in the texture of an igneous rock. Crystals may be euhedral, subeuhedral or anhedral:
- Euhedral, if the crystallographic shape is preserved.
- Subeuhedral or Subhedral, if only part is preserved.
- Anhedral, if the crystal presents no recognizable crystallographic direction.
Rocks composed entirely of euhedral crystals are termed panidiomorphic, and rocks composed entirely of subhedral crystals are termed subidiomorphic.
[edit] Porphyritic structure
Porphyritic structure is caused by the nucleation of crystal sites and the growth of crystals in a liquid magma. Often a magma can only grow one mineral at a time especially if it is cooling slowly. This is why most igneous rocks have only one type of phenocryst mineral. Rhythmic cumulate layers in ultramafic intrusions are a result of uninterrupted slow cooling.
When a rock cools too quickly the liquid freezes into a solid glass, or crystalline groundmass. Often vapor loss from a magma chamber will cause a porphyritic texture.
Embayments or 'corroded' margins to phenocrysts infer that they were being resorbed by the magma and may imply addition of fresh, hotter magma. Ostwald ripening is also used to explain some porphyritic igneous textures, especially orthoclase megacrystic granites.
[edit] Phenocryst shape: implications
A crystal growing in a magma adopts a habit (see crystallography) which best reflects its environment and cooling rate. The usual phenocryst habit is the ones commonly observed. This may imply a 'normal' cooling rate.
Abnormal cooling rates occur in supercooled magmas, particularly komatiite lavas. Here, low nucleation rates due to superfluidity prevent nucleation until the liquid is well below the mineral growth curve. Growth then occurs at extreme rates, favoring slender, long crystals. Additionally, at crystal vertices and terminations, spikes and skeletal shapes may form because nucleation favors crystal edges. Spinifex or dendritic texture is an example of this result. Hence, the shape of phenocrysts can provide valuable information on cooling rate and initial magma temperature.
[edit] Spherulites
Spherulitic texture is the result of cooling and nucleation of material in a magma which has achieved supersaturation in the crystal component. Thus it is often a subsolidus process in supercooler felsic rocks. Often, two minerals will grow together in the spherulite. Axiolitic texture results from spherulitic growth along fractures in volcanic glass, often from invasion of water.
[edit] Graphic and other intergrowth textures
Intergrowths of two or more minerals can form in a variety of ways, and interpretations of the intergrowths can be critical in understanding both magmatic and cooling histories of igneous rocks. A few of the many important textures are presented here as examples.
Graphic, micrographic texture, and granophyric textures are examples of intergrowths formed during magmatic crystallization. They are angular intergrowths of quartz and alkali feldspar. When well-developed, the intergrowths may resemble ancient cuneiform writing, hence the name. These intergrowths are typical of pegmatite and granophyre, and they have been interpreted as documenting simultaneous crystallization of the intergrown minerals in the presence of a silicate melt together with a water-rich phase.
Intergrowths that form by exsolution are aids in interpreting cooling histories of rocks. Perthite is an intergrowth of K-feldspar with albite feldspar, formed by exsolution from an alkali feldspar of intermediate composition: the coarseness of perthitic intergrowths is related to cooling rate. Perthite is typical of many granites. Myrmekite is a microscopic, vermicular (worm-like) intergrowth of quartz and sodium-rich plagioclase common in granite; myrmekite may form as alkali feldspar breaks down by exsolution and silicon is transported by fluids in cooling rocks.
Iron-titanium oxides are extremely important, as they carry the predominant magnetic signatures of many rocks, and so they have played a major role in our understanding of plate tectonics. These oxides commonly have complex textures related both to exsolution and oxidation. For instance, ulvospinel in igneous rocks such as basalt and gabbro commonly oxidizes during subsolidus cooling to produce regular intergrowths of magnetite and ilmenite. The process can determine what magnetic record is inherited by the rock.
[edit] See also
- List of rock textures
- List of rock types
- Metamorphism
- Structural geology
- Sedimentology
- Petrology
- Boudinage
[edit] References
- Vernon, Ron H., 2004, A Practical Guide to Rock Microstructure, Oxford University Press, Oxford. ISBN 0-521-89133-7