From Wikipedia, the free encyclopedia
|
This article is within the scope of WikiProject Physics, which collaborates on articles related to physics. |
Stub |
This article has been rated as Stub-Class on the assessment scale. |
??? |
This article has not yet received an importance rating within physics. |
Help with this template This article has been rated but has no comments. If appropriate, please review the article and leave comments here to identify the strengths and weaknesses of the article and what work it will need.
|
|
This article has been automatically assessed as Stub-Class by WikiProject Physics because it uses a stub template.
- If you agree with the assessment, please remove {{Physics}}'s auto=yes parameter from this talk page.
- If you disagree with the assessment, please change it by editing the class parameter of the {{Physics}} template, removing {{Physics}}'s auto=yes parameter from this talk page, and removing the stub template from the article.
|
No! In the chiral limit, we have two global symmetries SU(Nf)L and SU(Nf)R. We also have a hidden gauge symmetry SU(Nf)hid which is completely distinct from the chiral symmetries. The global chiral symmetry group is spontaneously broken to SU(Nf)diag with the pions as the Goldstone bosons whereas the hidden gauge symmetry is also spontaneously broken, leading to the massive rho mesons. Phys 20:44, 30 October 2005 (UTC)