Representations of e

From Wikipedia, the free encyclopedia

  Part of a series of articles on
The mathematical constant, e

Natural logarithm

Applications in: compound interest · Euler's identity & Euler's formula  · half-lives & exponential growth/decay

Defining e: proof that e is irrational  · representations of e · Lindemann–Weierstrass theorem

People John Napier  · Leonhard Euler

Schanuel's conjecture

The mathematical constant e can be represented in a variety of ways as a real number. Since e is an irrational number (see proof that e is irrational), it cannot be represented as a fraction, but it can be represented as a continued fraction. Using calculus, e may also be represented as an infinite series, infinite product, or other sort of limit of a sequence.

Contents

[edit] As a continued fraction

The number e can be represented as an infinite simple continued fraction (sequence A003417 in OEIS):

e = [2; 1, \textbf{2}, 1, 1, \textbf{4}, 1, 1, \textbf{6}, 1, 1, \textbf{8}, 1, \ldots,1, \textbf{2n}, 1,\ldots] \,

Here are some infinite generalized continued fraction expansions of e. The second of these can be generated from the first by a simple equivalence transformation. The third one – with ... 6, 10, 14, ... in it – converges very quickly.


e= 2+\cfrac{1}{1+\cfrac{1}{2+\cfrac{2}{3+\cfrac{3}{4+\cfrac{4}{\ddots}}}}} \qquad
e= 2+\cfrac{2}{2+\cfrac{3}{3+\cfrac{4}{4+\cfrac{5}{5+\cfrac{6}{\ddots\,}}}}}


e = 1+\cfrac{2}{1+\cfrac{1}{6+\cfrac{1}{10+\cfrac{1}{14+\cfrac{1}{\ddots\,}}}}}


e^{2m/n} = 1+\cfrac{2m}{(n-m)+\cfrac{m^2}{3n+\cfrac{m^2}{5n+\cfrac{m^2}{7n+\cfrac{m^2}{\ddots\,}}}}}

Setting m=x and n=2 yields

e^x = 1+\cfrac{2x}{(2-x)+\cfrac{x^2}{6+\cfrac{x^2}{10+\cfrac{x^2}{14+\cfrac{x^2}{\ddots\,}}}}}

[edit] As an infinite series

The number e is also equal to the sum of the following infinite series:

e = \sum_{k=0}^\infty \frac{1}{k!}
e = \left [ \sum_{k=0}^\infty \frac{(-1)^k}{k!} \right ]^{-1}
e = \left [ \sum_{k=0}^\infty \frac{1-2k}{(2k)!} \right ]^{-1} [1]
e =  \frac{1}{2} \sum_{k=0}^\infty \frac{k+1}{k!}
e =  2 \sum_{k=0}^\infty \frac{k+1}{(2k+1)!}
e =   \sum_{k=0}^\infty \frac{3-4k^2}{(2k+1)!}
e =   \sum_{k=0}^\infty \frac{(3k)^2+1}{(3k)!}
e =   \left [ \sum_{k=0}^\infty \frac{4k+3}{2^{2k+1}\,(2k+1)!} \right ]^2
e =  -\frac{12}{\pi^2} \left [ \sum_{k=1}^\infty \frac{1}{k^2} \ \cos \left ( \frac{9}{k\pi+\sqrt{k^2\pi^2-9}} \right ) \right ]^{-1/3}
e =  \sum_{k=1}^\infty \frac{k^2}{2(k!)}
e =  \sum_{k=1}^\infty \frac{k}{2(k-1)!}
e =  \sum_{k=1}^\infty \frac{k^3}{5(k!)}
e =  \sum_{k=1}^\infty \frac{k^4}{15(k!)}
e =  \sum_{k=1}^\infty \frac{k^n}{B_n(k!)} where Bn is the nth Bell number.

[edit] As an infinite product

The number e is also given by several infinite product forms including Pippenger's product

 e= 2 \left ( \frac{2}{1} \right )^{1/2} \left ( \frac{2}{3}\; \frac{4}{3} \right )^{1/4} \left ( \frac{4}{5}\; \frac{6}{5}\; \frac{6}{7}\; \frac{8}{7} \right )^{1/8} \cdots

and Guillera's product [2]

 e = \left ( \frac{2}{1} \right )^{1/1} \left (\frac{2^2}{1 \cdot 3} \right )^{1/2} \left (\frac{2^3 \cdot 4}{1 \cdot 3^3} \right )^{1/3} 
\left (\frac{2^4 \cdot 4^4}{1 \cdot 3^6 \cdot 5} \right )^{1/4}  \cdots ,

where the nth factor is the nth root of the product

\prod_{k=0}^n (k+1)^{(-1)^{k+1}{n \choose k}},

as well as the infinite product

 e = \frac{2\cdot 2^{(\ln(2)-1)^2} \cdots}{2^{\ln(2)-1}\cdot 2^{(\ln(2)-1)^3}\cdots }.

[edit] As the limit of a sequence

The number e is equal to the limit of several infinite sequences:

 e= \lim_{n \to \infty} n\cdot\left ( \frac{\sqrt{2 \pi n}}{n!} \right )^{1/n}   and
 e=\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}} (both by Stirling's formula).

The symmetric limit,

e=\lim_{n \to \infty} \left [ \frac{(n+1)^{n+1}}{n^n}- \frac{n^n}{(n-1)^{n-1}} \right ] [3]

may be obtained by manipulation of the basic limit definition of e. Another limit is

e= \lim_{n \to \infty}(p_n \#)^{1/p_n} [4]

where pn is the nth prime and  p_n \# is the primorial of the nth prime.

Also:

e^x= \lim_{n \to \infty}\left (1+ \frac{x}{n} \right )^n

And when x = 1 the result is the famous statement:

e= \lim_{n \to \infty}\left (1+ \frac{1}{n} \right )^n

[edit] Notes

  1. ^ Formulas 2-7: H. J. Brothers, Improving the convergence of Newton's series approximation for e. The College Mathematics Journal, Vol. 35, No. 1, 2004; pages 34-39.
  2. ^ J. Sondow, A faster product for pi and a new integral for ln pi/2, Amer. Math. Monthly 112 (2005) 729-734.
  3. ^ H. J. Brothers and J. A. Knox, New closed-form approximations to the Logarithmic Constant e. The Mathematical Intelligencer, Vol. 20, No. 4, 1998; pages 25-29.
  4. ^ S. M. Ruiz 1997
Languages