Talk:Rencontres numbers
From Wikipedia, the free encyclopedia
START Zlajos 17 jun 2007
Extension: If all character once : example: ABCDE......
- A008290 Triangle T(n,k) of rencontres numbers (number of *permutations of n elements with k fixed points).[[1]]
[edit] 1.table
fixed point: character numbers: | free or "0" | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
"0" | 1 | ||||||||||||
1 | 0 | 1 | |||||||||||
11 | 1 | 0 | 1 | ||||||||||
111 | 2 | 3 | 0 | 1 | |||||||||
1111 | 9 | 8 | 6 | 0 | 1 | ||||||||
11111 | 44 | 45 | 20 | 10 | 0 | 1 | |||||||
111111 | 265 | 264 | 135 | 40 | 15 | 0 | 1 | ||||||
1111111 | 1854 | 1855 | 924 | 315 | 70 | 21 | 0 | 1 |
- If all character twice: example: AABBCC....
- A059056 Penrice Christmas gift numbers, Card-matching numbers (Dinner-Diner matching numbers). [[2]]
COMMENT: Analogous to A008290. - Zerinvary Lajos (zerinvarylajos(AT)yahoo.com), Jun 10 2005
1, 0, 0, 1, 1, 0, 4, 0, 1, 10, 24, 27, 16, 12, 0, 1, 297, 672, 736, 480, 246, 64, 24, 0, 1, 13756, 30480, 32365, 21760, 10300, 3568, 970, 160, 40, 0, 1, 925705, 2016480, 2116836, 1418720, 677655, 243360, 67920, 14688, 2655, 320, 60, 0, 1
[edit] 2.table
fixed point: character numbers: | free or "0" | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
"0" | 1 | ||||||||||||
2 | 0 | 0 | 1 | ||||||||||
22 | 1 | 0 | 4 | 0 | 1 | ||||||||
222 | 10 | 24 | 27 | 16 | 12 | 0 | 1 | ||||||
2222 | 297 | 672 | 736 | 480 | 246 | 64 | 24 | 0 | 1 | ||||
22222 | 13756 | 30480 | 32365 | 21760 | 10300 | 3568 | 970 | 160 | 40 | 0 | 1 | ||
222222 | 925705 | 2016480 | 2116836 | 1418720 | 677655 | 243360 | 67920 | 14688 | 2655 | 320 | 60 | 0 | 1 |
2222222 | 85394646 | 183749160 | 191384599 | 128058000 | 61585776 | 22558928 | 6506955 | 1507392 | 284550 | 43848 | 5901 | 560 | 84 |
If original or classic table: (1.table)
- "0" (table sign: "0")then 1 derangements,
- "A" (table sign: 1)then 0 derangements,
- "AB" (table sign: 11)then 1 derangements,
- "ABC" (table sign: 111)then 2 derangements,
- "ABCD" (table sign: 1111)then 9 derangements, etc.
[edit] column > free or 0 :
[edit] 1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961...
- 00166 Subfactorial or rencontres numbers, or derangements: number of permutations of n elements with no fixed points.[[00166 Subfactorial or rencontres numbers, or derangements: number of permutations of n elements with no fixed points.]]
then:
- analogous (2.table)
- "0" (table sign: "0")then 1 derangements,
- AA (table sign: 2)then 0 derangements,
- AABB (table sign: 22)then 1 derangements,
- AABBCC (table sign: 222)then 10 derangements,
- AABBCCDD (table sign: 2222)then 297 derangements, etc.
[edit] column > free or 0 :
[edit] 1, 0, 1, 10, 297, 13756, 925705, 85394646,...
- A059072 Penrice Christmas gift numbers; card-matching numbers; dinner-diner matching numbers.[[3]]
FORMULA: MAPLE p := (x, k)->k!^2*sum(x^j/((k-j)!^2*j!), j=0..k); R := (x, n, k)->p(x, k)^n; f := (t, n, k)->sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k);seq(f(0, n, 2)/2!^n, n=0..18); (AUTHOR Barbara Haas Margolius (margolius(AT)math.csuohio.edu) )
- COMMENT Number of fixed-point-free permutations of n distinct letters (ABCD...), each of which appears twice. If there is only one letter of each type we get A000166. - Zerinvary Lajos (zerinvarylajos(AT)yahoo.com), Oct 15 2006
[edit] Question:
[edit] 2.table
[edit] column: 2,3,4,5,...
[edit] where is it :formula or generating function(?)
[edit] where is it :bibliography?
[edit] 3.table
fixed point: character numbers: | free or "0" | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
"0" | 1 | ||||||||||||
3 | 0 | 0 | 0 | 1 | |||||||||
33 | 1 | 0 | 9 | 0 | 9 | 0 | 1 | ||||||
333 | 56 | 216 | 378 | 435 | 324 | 189 | 54 | 27 | 0 | 1 | |||
3333 | 13833 | 49464 | 84510 | 90944 | 69039 | 38448 | 16476 | 5184 | 1431 | 216 | 54 | 0 | 1 |
33333 | 6699824 | 23123880 | 38358540 | 40563765 | 30573900 | 17399178 | 7723640 | 2729295 | 776520 | 180100 | 33372 | 5355 | 540 |
333333 | 5691917785 | 19180338840 | 31234760055 | 32659846104 | 24571261710 | 14125889160 | 6433608330 | 2375679240 | 722303568 | 182701480 | 38712600 | 6889320 | 1035330 |
3333333 | 7785547001784 | 25791442770240 | etc |
If original or classic table: (1.table)
- "0" (table sign: "0")then 1 derangements,
- "A" (table sign: 1)then 0 derangements,
- "AB" (table sign: 11)then 1 derangements,
- "ABC" (table sign: 111)then 2 derangements,
- "ABCD" (table sign: 1111)then 9 derangements, etc.
[edit] column > free or 0 :
[edit] 1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961...
- 00166 Subfactorial or rencontres numbers, or derangements: number of permutations of n elements with no fixed points.[[00166 Subfactorial or rencontres numbers, or derangements: number of permutations of n elements with no fixed points.]]
then:
- analogous (3.table)
- "0" (table sign: "0")then 1 derangements,
- AAA (table sign: 3)then 0 derangements,
- AAABBB (table sign: 33)then 1 derangements,
- AAABBBCCC (table sign: 333)then 56 derangements,
- AAABBBCCCDDD (table sign: 3333)then 13833 derangements, etc.
[edit] column > free or 0 :
[edit] 1, 0, 1, 56, 13833, 6699824, 5691917785, 7785547001784,
- A059073 Card-matching numbers (Dinner-Diner matching numbers).
FORMULA: MAPLE p := (x, k)->k!^2*sum(x^j/((k-j)!^2*j!), j=0..k); R := (x, n, k)->p(x, k)^n; f := (t, n, k)->sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k); seq(f(0, n, 3)/3!^n, n=0..18); (AUTHOR Barbara Haas Margolius (margolius(AT)math.csuohio.edu) [[4]]
- Number of fixed-point-free permutations of n distinct letters (ABCD...), each of which appears thrice. If there is only one letter of each type we get A000166. - Zerinvary Lajos (zerinvarylajos(AT)yahoo.com), Oct 15 2006
- 2.column (free or "0" -fixed point
" " :1
111 :2
222 :10
333 :56
444 :346
555 :2252
etc... A000172 Franel number a(n) = Sum C(n,k)^3, k=0..n. [[5]]
- 3.column ( "1" -fixed point)
111 :3
222 :24
333 :216
444 :1824
555 :15150
etc... A000279 Card matching. [[6]] COMMENT
Number of permutations of 3 distinct letters (ABC) each with n copies such that one (1) fixed points. E.g. if AAAAABBBBBCCCCC n=3*5 letters permutations then one fixed points n5=15150 - Zerinvary Lajos (zerinvarylajos(AT)yahoo.com), Feb 02 2006
- 4.column ( "2" fixed point)
111 :0
222 :27
333 :378
444 :4536
555 :48600
etc... A000535 Card matching. [[7]]
- 5.column ( "3" fixed point)
111 :1
222 :16
333 :435
444 :7136
555 :99350
etc... A000489 Card matching. [[8]]
[edit] 3.table
[edit] column: 2,3,4,5,...
[edit] where is it :formula or generating function(?)
[edit] where is it :bibliography?
continued:
- charcters:quadruple, example:AAAA, AAAABBBB, AAAABBBBCCCC, AAAABBBBCCCCDDDD, etc...
- table 1.column :4, 44, 444, 4444, 44444, etc...
- charcters:quintuple, example:AAAAA, AAAAABBBBB, AAAAABBBBBCCCCC, etc...
- table 1.column :5, 55, 555, 5555, 55555, etc...
- a great number of connexion of interesting !!
Zlajos
19. jun. 2007.
- copy:[[9]]
Zlajos 28. jun. 2007.