Rectangular function

From Wikipedia, the free encyclopedia

Rectangular function
Rectangular function

The rectangular function (also known as the rectangle function, rect function, unit pulse, or the normalized boxcar function) is defined as:

\mathrm{rect}(t) = \sqcap(t) = \begin{cases}
0           & \mbox{if } |t| > \frac{1}{2} \\[3pt]
\frac{1}{2} & \mbox{if } |t| = \frac{1}{2} \\[3pt]
1           & \mbox{if } |t| < \frac{1}{2}.
\end{cases}

Alternate definitions of the function define \mathrm{rect}(\pm \begin{matrix} \frac{1}{2} \end{matrix}) to be 0, 1, or undefined. We can also express the rectangular function in terms of the Heaviside step function, u(t):

\mathrm{rect}\left(\frac{t}{\tau}\right) = u \left( t + \frac{\tau}{2} \right) - u \left( t - \frac{\tau}{2} \right),\,

or, alternatively:

\mathrm{rect}(t) = u \left( t + \frac{1}{2} \right) \cdot u \left( \frac{1}{2} - t \right).\,

The unitary Fourier transforms of the rectangular function are:

\int_{-\infty}^\infty \mathrm{rect}(t)\cdot e^{-i 2\pi f t} \, dt
=\frac{\sin(\pi f)}{\pi f} = \mathrm{sinc}(f),\,

and:

\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty \mathrm{rect}(t)\cdot e^{-i \omega t} \, dt
=\frac{1}{\sqrt{2\pi}}\cdot \mathrm{sinc}\left(\frac{\omega}{2\pi}\right),\,

where sinc is the normalized form.

We can define the triangular function as the convolution of two rectangular functions:

\mathrm{tri}(t) = \mathrm{rect}(t) * \mathrm{rect}(t).\,

Viewing the rectangular function as a probability distribution function, its characteristic function is:

\varphi(k) = \frac{\sin(k/2)}{k/2},\,

and its moment generating function is:

M(k)=\frac{\mathrm{sinh}(k/2)}{k/2},\,

where sinh(t) is the hyperbolic sine function.

[edit] See also