RANGAP1

From Wikipedia, the free encyclopedia


Ran GTPase activating protein 1
PDB rendering based on 1z5s.
Available structures: 1z5s, 2grn, 2gro, 2grp, 2grq, 2grr, 2io2, 2io3, 2iy0
Identifiers
Symbol(s) RANGAP1; Fug1; KIAA1835; MGC20266; SD
External IDs OMIM: 602362 MGI103071 HomoloGene55700
RNA expression pattern

More reference expression data

Orthologs
Human Mouse
Entrez 5905 19387
Ensembl ENSG00000100401 ENSMUSG00000022391
Uniprot P46060 Q3UZD8
Refseq NM_002883 (mRNA)
NP_002874 (protein)
NM_011241 (mRNA)
NP_035371 (protein)
Location Chr 22: 39.97 - 40.03 Mb Chr 15: 81.53 - 81.56 Mb
Pubmed search [1] [2]

Ran GTPase activating protein 1, also known as RANGAP1, is a human gene.[1]

RanGAP1, is a homodimeric 65-kD polypeptide that specifically induces the GTPase activity of RAN, but not of RAS by over 1,000-fold. RanGAP1 is the immediate antagonist of RCC1, a regulator molecule that keeps RAN in the active, GTP-bound state. The RANGAP1 gene encodes a 587-amino acid polypeptide. The sequence is unrelated to that of GTPase activators for other RAS-related proteins, but is 88% identical to Fug1, the murine homolog of yeast Rna1p. RanGAP1 and RCC1 control RAN-dependent transport between the nucleus and cytoplasm. RanGAP1 is a key regulator of the RAN GTP/GDP cycle.[1]

[edit] References

[edit] Further reading

  • Becker J, Melchior F, Gerke V, et al. (1995). "RNA1 encodes a GTPase-activating protein specific for Gsp1p, the Ran/TC4 homologue of Saccharomyces cerevisiae.". J. Biol. Chem. 270 (20): 11860–5. PMID 7744835. 
  • Bischoff FR, Krebber H, Kempf T, et al. (1995). "Human RanGTPase-activating protein RanGAP1 is a homologue of yeast Rna1p involved in mRNA processing and transport.". Proc. Natl. Acad. Sci. U.S.A. 92 (5): 1749–53. PMID 7878053. 
  • Bischoff FR, Klebe C, Kretschmer J, et al. (1994). "RanGAP1 induces GTPase activity of nuclear Ras-related Ran.". Proc. Natl. Acad. Sci. U.S.A. 91 (7): 2587–91. PMID 8146159. 
  • Krebber H, Ponstingl H (1997). "Ubiquitous expression and testis-specific alternative polyadenylation of mRNA for the human Ran GTPase activator RanGAP1.". Gene 180 (1-2): 7–11. PMID 8973340. 
  • Matunis MJ, Coutavas E, Blobel G (1997). "A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex.". J. Cell Biol. 135 (6 Pt 1): 1457–70. PMID 8978815. 
  • Mahajan R, Delphin C, Guan T, et al. (1997). "A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2.". Cell 88 (1): 97–107. PMID 9019411. 
  • Görlich D, Dabrowski M, Bischoff FR, et al. (1997). "A novel class of RanGTP binding proteins.". J. Cell Biol. 138 (1): 65–80. PMID 9214382. 
  • Scheffzek K, Ahmadian MR, Kabsch W, et al. (1998). "The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants.". Science 277 (5324): 333–8. PMID 9219684. 
  • Mahajan R, Gerace L, Melchior F (1998). "Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association.". J. Cell Biol. 140 (2): 259–70. PMID 9442102. 
  • Kamitani T, Kito K, Nguyen HP, et al. (1998). "Characterization of a second member of the sentrin family of ubiquitin-like proteins.". J. Biol. Chem. 273 (18): 11349–53. PMID 9556629. 
  • Okuma T, Honda R, Ichikawa G, et al. (1999). "In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2.". Biochem. Biophys. Res. Commun. 254 (3): 693–8. doi:10.1006/bbrc.1998.9995. PMID 9920803. 
  • Hillig RC, Renault L, Vetter IR, et al. (1999). "The crystal structure of rna1p: a new fold for a GTPase-activating protein.". Mol. Cell 3 (6): 781–91. PMID 10394366. 
  • Dunham I, Shimizu N, Roe BA, et al. (1999). "The DNA sequence of human chromosome 22.". Nature 402 (6761): 489–95. doi:10.1038/990031. PMID 10591208. 
  • Nagase T, Nakayama M, Nakajima D, et al. (2001). "Prediction of the coding sequences of unidentified human genes. XX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro.". DNA Res. 8 (2): 85–95. PMID 11347906. 
  • Bernier-Villamor V, Sampson DA, Matunis MJ, Lima CD (2002). "Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1.". Cell 108 (3): 345–56. PMID 11853669. 
  • Joseph J, Tan SH, Karpova TS, et al. (2002). "SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles.". J. Cell Biol. 156 (4): 595–602. doi:10.1083/jcb.200110109. PMID 11854305. 
  • Zhang H, Saitoh H, Matunis MJ (2002). "Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex.". Mol. Cell. Biol. 22 (18): 6498–508. PMID 12192048. 
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMID 12477932. 
  • Beausoleil SA, Jedrychowski M, Schwartz D, et al. (2004). "Large-scale characterization of HeLa cell nuclear phosphoproteins.". Proc. Natl. Acad. Sci. U.S.A. 101 (33): 12130–5. doi:10.1073/pnas.0404720101. PMID 15302935. 
  • Macauley MS, Errington WJ, Okon M, et al. (2005). "Structural and dynamic independence of isopeptide-linked RanGAP1 and SUMO-1.". J. Biol. Chem. 279 (47): 49131–7. doi:10.1074/jbc.M408705200. PMID 15355965.