Ramanujan's sum

From Wikipedia, the free encyclopedia

This article is not about Ramanujan summation.


In number theory, a branch of mathematics, Ramanujan's sum, usually denoted cq(n), is a function of two positive integer variables q and n defined by the formula

c_q(n)=
\sum_{a=1\atop (a,q)=1}^q
e^{2 \pi i \tfrac{a}{q} n}
,

where (a,q) = 1 means that a only takes on values coprime to q.

Srinivasa Ramanujan introduced the sums in a 1918 paper.[1]

Contents

[edit] Notation

For integers a and b,   a\mid b is read "a divides b" and means that there is an integer c such that b = ac. Similarly, a\nmid b is read "a does not divide b". The summation symbol \sum_{d\,\mid\,m}f(d) means that d goes through all the positive divisors of m, e.g.

\sum_{d\,\mid\,12}f(d) = 
f(1) + f(2) + f(3) + f(4) + f(6) + f(12).


(a,b) is the greatest common divisor,

φ(n) is Euler's totient function,

μ(n) is the Möbius function, and

ζ(s) is the Riemann zeta function.

[edit] Formulas for cq(n)

[edit] Trigonometric

These formulas come from the definition, Euler's formula eix = cosx + isinx, and elementary trig identities.

c1(n) = 1
c2(n) = cosnπ
c_3(n)=
2\cos \tfrac23 n\pi
c_4(n)=
2\cos \tfrac12 n\pi
c_5(n)=
2\cos \tfrac25 n\pi + 
2\cos \tfrac45 n\pi
c_6(n)=
2\cos \tfrac13 n\pi
c_7(n)=
2\cos \tfrac27 n\pi + 
2\cos \tfrac47 n\pi + 
2\cos \tfrac67 n\pi
c_8(n)=
2\cos \tfrac14 n\pi + 
2\cos \tfrac34 n\pi
c_9(n)=
2\cos \tfrac29 n\pi + 
2\cos \tfrac49 n\pi + 
2\cos \tfrac89 n\pi
c_{10}(n)=
2\cos \tfrac15 n\pi + 
2\cos \tfrac35 n\pi


and so on. They show that cq(n) is always real.


[edit] Kluyver

Let \zeta_q=e^{\frac{2\pi i}{q}}.


Then ζq is a root of the equation xq – 1 = 0. Each of its powers ζq, ζq2, ... ζqq = ζq0 = 1 is also a root. Therefore, since there are q of them, they are all of the roots. The numbers ζqn where 1 ≤ nq are called the q th roots of unity. ζq is called a primitive q th root of unity because the smallest value of n that makes ζqn = 1 is q. The other primitive q th roots of are the numbers ζqa where (a, q) = 1. Therefore, there are φ(q) primitive q th roots of unity.

Thus, the Ramanujan sum cq(n) is the sum of the n th powers of the primitive q th roots of unity.

It is a fact that the powers of ζq are precisely the primitive roots for all the divisors of q.

For example, let q = 12. Then

ζ12, ζ125, ζ127, and ζ1211 are the primitive twelfth roots of unity,
ζ122 and ζ1210 are the primitive sixth roots of unity,
ζ123 = i and ζ129 = −i are the primitive fourth roots of unity,
ζ124 and ζ128 are the primitive third roots of unity,
ζ126 = −1 is the primitive second root of unity, and
ζ1212 = 1 is the primitive first root of unity.

Therefore, if

\eta_q(n) = \sum_{k=1}^q \zeta_q^{kn}

is the sum of the n th powers of all the roots, primitive and imprimitive,

\eta_q(n) = \sum_{d\,\mid\, q} c_d(n),

and by Möbius inversion,

c_q(n) = \sum_{d\,\mid\,q} \mu\left(\frac{q}d\right)\eta_d(n).

It follows from the identity xq – 1 = (x – 1)(xq–1 + xq–2 + ... + x + 1) that


\eta_q(n) = 
\begin{cases}
&0\mbox{  if }q\nmid n\\
&q\mbox{  if }q\mid n\\
\end{cases}

and this leads to the formula


c_q(n)=
\sum_{d\,\mid\,(q,n)}\mu\left(\frac{q}{d}\right) d
,
    published by Kluyver in 1906.[2]


This shows that cq(n) is always an integer. Compare it with 
\phi(q)=
\sum_{d\,\mid\,q}\mu\left(\frac{q}{d}\right) d
.

[edit] von Sterneck

It is easily shown from the definition that cq(n) is multiplicative when considered as a function of q for a fixed value of n: i.e.

If (q,r) = 1 then cq(n)cr(n) = cqr(n).


From the definition (or Kluyver's formula) it is straightforward to prove that, if p is a prime number,


c_p(n) = 
\begin{cases}
-1     &\mbox{  if }p\nmid n\\
\phi(p)&\mbox{  if }p\mid n\\
\end{cases}
,


and if pk is a prime power where k > 1,


c_{p^k}(n) = 
\begin{cases}
0         &\mbox{  if }p^{k-1}\nmid n\\
-p^{k-1}  &\mbox{  if }p^{k-1}\mid n \mbox{ and }p^k\nmid n\\
\phi(p^k) &\mbox{  if }p^k\mid n\\
\end{cases}
.


This result and the multiplicative property can be used to prove

c_q(n)=
\mu\left(\frac{q}{(q, n)}\right)
\frac{\phi(q)}{\phi\left(\frac{q}{(q, n)}\right)}
.
    This is called von Sterneck's arithmetic function.[3]

[edit] Other properties of cq(n)

For all positive integers q,

c1(q) = 1, cq(1) = μ(q), and cq(q) = φ(q).



\mbox{If }
m \equiv n \pmod q
\mbox{ then }
c_q(m) = 
c_q(n)
.


For a fixed value of q both of the sequences cq(1), cq(2), ... and c1(q), c2(q), ... remain bounded.


If q > 1

\sum_{n=a}^{a+q-1} c_q(n)=0.

[edit] Table

Ramanujan Sum cs(n)
  n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
s 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1
3 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2
4 0 −2 0 2 0 −2 0 2 0 −2 0 −2 0 2 0 −2 0 2 0 −2 0 −2 0 2 0 −2 0 2 0 −2
5 −1 −1 −1 −1 4 −1 −1 −1 −1 4 −1 −1 −1 −1 4 −1 −1 −1 −1 4 −1 −1 −1 −1 4 −1 −1 −1 −1 4
6 1 −1 −2 −1 1 2 1 −1 −2 −1 1 2 1 −1 −2 −1 1 2 1 −1 −2 −1 1 2 1 −1 −2 −1 1 2
7 −1 −1 −1 −1 −1 −1 6 −1 −1 −1 −1 −1 −1 6 −1 −1 −1 −1 −1 −1 6 −1 −1 −1 −1 −1 −1 6 −1 −1
8 0 0 0 −4 0 0 0 4 0 0 0 −4 0 0 0 4 0 0 0 −4 0 0 0 4 0 0 0 −4 0 0
9 0 0 −3 0 0 −3 0 0 6 0 0 −3 0 0 −3 0 0 6 0 0 −3 0 0 −3 0 0 6 0 0 −3
10 1 −1 1 −1 −4 −1 1 −1 1 4 1 −1 1 −1 −4 −1 1 −1 1 4 1 −1 1 −1 −4 −1 1 −1 1 4
11 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 10 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 10 −1 −1 −1 −1 −1 −1 −1 −1
12 0 2 0 −2 0 −4 0 −2 0 2 0 4 0 2 0 −2 0 −4 0 −2 0 2 0 4 0 2 0 −2 0 −4
13 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 12 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 12 −1 −1 −1 −1
14 1 −1 1 −1 1 −1 −6 −1 1 −1 1 −1 1 6 1 −1 1 −1 1 −1 −6 −1 1 −1 1 −1 1 6 1 −1
15 1 1 −2 1 −4 −2 1 1 −2 −4 1 −2 1 1 8 1 1 −2 1 −4 −2 1 1 −2 −4 1 −2 1 1 8
16 0 0 0 0 0 0 0 −8 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 −8 0 0 0 0 0 0
17 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 16 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
18 0 0 3 0 0 −3 0 0 −6 0 0 −3 0 0 3 0 0 6 0 0 3 0 0 −3 0 0 −6 0 0 −3
19 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 18 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
20 0 2 0 −2 0 2 0 −2 0 −8 0 −2 0 2 0 −2 0 2 0 8 0 2 0 −2 0 2 0 −2 0 −8
21 1 1 −2 1 1 −2 −6 1 −2 1 1 −2 1 −6 −2 1 1 −2 1 1 12 1 1 −2 1 1 −2 −6 1 −2
22 1 −1 1 −1 1 −1 1 −1 1 −1 −10 −1 1 −1 1 −1 1 −1 1 −1 1 10 1 −1 1 −1 1 −1 1 −1
23 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 22 −1 −1 −1 −1 −1 −1 −1
24 0 0 0 4 0 0 0 −4 0 0 0 −8 0 0 0 −4 0 0 0 4 0 0 0 8 0 0 0 4 0 0
25 0 0 0 0 −5 0 0 0 0 −5 0 0 0 0 −5 0 0 0 0 −5 0 0 0 0 20 0 0 0 0 −5
26 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 −12 −1 1 −1 1 −1 1 −1 1 −1 1 −1 −1 12 1 −1 1 −1
27 0 0 0 0 0 0 0 0 −9 0 0 0 0 0 0 0 0 −9 0 0 0 0 0 0 0 0 18 0 0 0
28 0 2 0 −2 0 2 0 −2 0 2 0 −2 0 −12 0 −2 0 2 0 −2 0 2 0 −2 0 2 0 12 0 2
29 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 28 −1
30 −1 1 2 1 4 −2 1 1 2 −4 −1 −2 −1 1 −8 1 −1 −2 −1 −4 2 1 −1 −2 4 1 2 1 −1 8

[edit] Ramanujan expansions

If f(n) is an arithmetic function (i.e. a complex-valued function of the integers or natural numbers), then a convergent infinite series of the form

f(n)=\sum_{q=1}^\infty a_q c_q(n) where the aq are complex numbers, or of the form
f(q)=\sum_{n=1}^\infty a_n c_q(n) where the an are complex numbers,

is called a Ramanujan expansion[4] of f(n). Ramanujan found expansions of some of the well-known functions of number theory. All of these results are proved in an "elementary" manner (i.e. only using formal manipulations of series and the simplest results about convergence).[5]

The expansion of the zero function depends on a result from the analytic theory of prime numbers, namely that the series \sum_{n=1}^\infty\frac{\mu(n)}{n} converges to 0, and the results for r(n) and r′(n) depend on theorems in an earlier paper.[6]

All the formulas in this section are from Ramanujan's 1918 paper.

[edit] Generating functions

The generating functions of the Ramanujan sums are Dirichlet series.



\zeta(s)
\sum_{\delta\,\mid\,q}
\mu\left(\frac{q}{\delta}\right)
\delta^{1-s} =
\sum_{n=1}^\infty
\frac{c_q(n)}{n^s}

is a generating function for the sequence cq(1), cq(2), ... where q is kept constant and



\frac{\sigma_{r-1}(n)}{n^r\zeta(r)}=
\sum_{q=1}^\infty
\frac{c_q(n)}{q^{r}}

is a generating function for the sequence c1(n), c2(n), ... where n is kept constant.


There is also the double Dirichlet series


\frac{\zeta(s) \zeta(r+s-1)}{\zeta(r)}= 
\sum_{q=1}^\infty \sum_{n=1}^\infty 
\frac{c_q(n)}{q^r n^s}
.

[edit] σk(n)

σk(n) is the divisor function (i.e. the sum of the kth powers of the divisors of n, including 1 and n). σ0(n), the number of divisors of n, is usually written d(n) and σ1(n), the sum of the divisors of n, is usually written σ(n).

If s > 0,


\sigma_s(n)=
n^s
\zeta(s+1)
\left(
\frac{c_1(n)}{1^{s+1}}+
\frac{c_2(n)}{2^{s+1}}+
\frac{c_3(n)}{3^{s+1}}+
\dots
\right)

and


\sigma_{-s}(n)=
\zeta(s+1)
\left(
\frac{c_1(n)}{1^{s+1}}+
\frac{c_2(n)}{2^{s+1}}+
\frac{c_3(n)}{3^{s+1}}+
\dots
\right).

Setting s = 1 gives


\sigma(n)=
\frac{\pi^2}{6}n
\left(
\frac{c_1(n)}{1}+
\frac{c_2(n)}{4}+
\frac{c_3(n)}{9}+
\dots
\right) .

If the Riemann hypothesis is true, and -\tfrac12<s<\tfrac12,


\begin{align}
\sigma_s(n)
&=
\zeta(1-s)
\left(
\frac{c_1(n)}{1^{1-s}}+
\frac{c_2(n)}{2^{1-s}}+
\frac{c_3(n)}{3^{1-s}}+
\dots
\right)\\

&=
n^s
\zeta(1+s)
\left(
\frac{c_1(n)}{1^{1+s}}+
\frac{c_2(n)}{2^{1+s}}+
\frac{c_3(n)}{3^{1+s}}+
\dots
\right).\\
\end{align}

[edit] d(n)

d(n) = σ0(n) is the number of divisors of n, including 1 and n itself.


-d(n)=
\frac{\log 1}{1}c_1(n)+
\frac{\log 2}{2}c_2(n)+
\frac{\log 3}{3}c_3(n)+
\dots

and


-d(n)(2\gamma+\log n)=
\frac{\log^2 1}{1}c_1(n)+
\frac{\log^2 2}{2}c_2(n)+
\frac{\log^2 3}{3}c_3(n)+
\dots

where γ = 0.5772... is the Euler–Mascheroni constant.


[edit] φ(n)

Euler's totient function φ(n) is the number of positive integers less than n and coprime to n.

Ramanujan defines a generalization of it: if n=p_1^{a_1}p_2^{a_2}p_3^{a_3}\dots is the prime factorization of n, and s is a complex number, let

\phi_s(n)=n^s(1-p_1^{-s})(1-p_2^{-s})(1-p_3^{-s})\dots,
so that φ1(n) = φ(n) is Euler's function.

He proves that


\frac{\mu(n)n^s}{\phi_s(n)\zeta(s)}=
\sum_{\nu=1}^\infty \frac{\mu(m\nu)}{\nu^s}

and uses this to show that

\frac{\phi_s(n)\zeta(s+1)}{n^s}=\frac{\mu(1)c_1(n)}{\phi_{s+1}(1)}+\frac{\mu(2)c_2(n)}{\phi_{s+1}(2)}+\frac{\mu(3)c_3(n)}{\phi_{s+1}(3)}+\dots.

Letting s = 1,



\begin{align}

\phi(n) = 

\frac{6}{\pi^2}n

\Big(
c_1(n)

&-\frac{c_2(n)}{2^2-1}
-\frac{c_3(n)}{3^2-1}
-\frac{c_5(n)}{5^2-1}  \\

&+\frac{c_6(n)}{(2^2-1)(3^2-1)}
-\frac{c_7(n)}{7^2-1}
+\frac{c_{10}(n)}{(2^2-1)(5^2-1)}
-\dots 
\Big).\\
\end{align}


Note that the constant is the inverse of the one in the formula for σ(n).

[edit] Λ(n)

Von Mangoldt's function Λ(n) is zero unless n = pk is a power of a prime number, in which case it is the natural logarithm log p.


-\Lambda(m) = 
c_m(1)+
\frac12c_m(2)+
\frac13c_m(3)+
\dots

[edit] Zero

0=
c_1(n)+
\frac12c_2(n)+
\frac13c_3(n)+
\dots

This is equivalent to the prime number theorem.

[edit] r2s(n) (sums of squares)

r2s(n) is the number of way of representing n as the sum of 2s squares, counting different orders and signs as different (e.g., r2(13) = 8, as 13 = (±2)2 + (±3)2 = (±3)2 + (±2)2.)

Ramanujan defines a function δ2s(n) and references a paper[7] in which he proved that r2s(n) = δ2s(n) for s = 1, 2, 3, and 4. For s > 4 he shows that δ2s(n) is a good approximation to r2s(n).


s = 1 has a special formula:


\delta_2(n)=
\pi
\left(
\frac{c_1(n)}{1}-
\frac{c_3(n)}{3}+
\frac{c_5(n)}{5}-
\dots
\right)

In the following formulas the signs repeat with a period of 4.

If s ≡ 0 (mod 4),


\delta_{2s}(n)=
\frac{\pi^s n^{s-1}}{(s-1)!}
\left(
\frac{c_1(n)}{1^s}+
\frac{c_4(n)}{2^s}+ 
\frac{c_3(n)}{3^s}+ 
\frac{c_8(n)}{4^s}+
\frac{c_5(n)}{5^s}+
\frac{c_{12}(n)}{6^s}+
\frac{c_7(n)}{7^s}+
\frac{c_{16}(n)}{8^s}+
\dots
\right)

If s ≡ 2 (mod 4),


\delta_{2s}(n)=
\frac{\pi^s n^{s-1}}{(s-1)!}
\left(
\frac{c_1(n)}{1^s}-
\frac{c_4(n)}{2^s}+ 
\frac{c_3(n)}{3^s}- 
\frac{c_8(n)}{4^s}+
\frac{c_5(n)}{5^s}-
\frac{c_{12}(n)}{6^s}+
\frac{c_7(n)}{7^s}-
\frac{c_{16}(n)}{8^s}+
\dots
\right)

If s ≡ 1 (mod 4) and s > 1,


\delta_{2s}(n)=
\frac{\pi^s n^{s-1}}{(s-1)!}
\left(
\frac{c_1(n)}{1^s}+
\frac{c_4(n)}{2^s}-
\frac{c_3(n)}{3^s}+ 
\frac{c_8(n)}{4^s}+
\frac{c_5(n)}{5^s}+
\frac{c_{12}(n)}{6^s}-
\frac{c_7(n)}{7^s}+
\frac{c_{16}(n)}{8^s}+
\dots
\right)

If s ≡ 3 (mod 4),


\delta_{2s}(n)=
\frac{\pi^s n^{s-1}}{(s-1)!}
\left(
\frac{c_1(n)}{1^s}-
\frac{c_4(n)}{2^s}-
\frac{c_3(n)}{3^s}- 
\frac{c_8(n)}{4^s}+
\frac{c_5(n)}{5^s}-
\frac{c_{12}(n)}{6^s}-
\frac{c_7(n)}{7^s}-
\frac{c_{16}(n)}{8^s}+
\dots
\right)

and therefore,


r_2(n)= 
\pi
\left(
\frac{c_1(n)}{1}-
\frac{c_3(n)}{3}+
\frac{c_5(n)}{5}-
\frac{c_7(n)}{7}+
\frac{c_{11}(n)}{11}-
\frac{c_{13}(n)}{13}+
\frac{c_{15}(n)}{15}-
\frac{c_{17}(n)}{17}+
\dots
\right)



r_4 (n)=
\pi^2 n
\left(
\frac{c_1(n)}{1}-
\frac{c_4(n)}{4}+
\frac{c_3(n)}{9}- 
\frac{c_8(n)}{16}+
\frac{c_5(n)}{25}-
\frac{c_{12}(n)}{36}+
\frac{c_7(n)}{49}-
\frac{c_{16}(n)}{64}+
\dots
\right)



r_6(n)=
\frac{\pi^3 n^2}{2}
\left(
\frac{c_1(n)}{1}-
\frac{c_4(n)}{8}-
\frac{c_3(n)}{27}- 
\frac{c_8(n)}{64}+
\frac{c_5(n)}{125}-
\frac{c_{12}(n)}{216}-
\frac{c_7(n)}{343}-
\frac{c_{16}(n)}{512}+
\dots
\right)



r_8(n)=
\frac{\pi^4 n^3}{6}
\left(
\frac{c_1(n)}{1}+
\frac{c_4(n)}{16}+ 
\frac{c_3(n)}{81}+ 
\frac{c_8(n)}{256}+
\frac{c_5(n)}{625}+
\frac{c_{12}(n)}{1296}+
\frac{c_7(n)}{2401}+
\frac{c_{16}(n)}{4096}+
\dots
\right)

[edit] r2s(n) (sums of triangles)

r2s(n) is the number of ways n can be represented as the sum of 2s triangular numbers (i.e. the numbers 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4, 15, ...; the nth triangular number is given by the formula n(n + 1)/2.)

The analysis here is similar to that for squares. Ramanujan refers to the same paper as he did for the squares, where he showed that there is a function δ′2s(n) such that r2s(n) = δ′2s(n) for s = 1, 2, 3, and 4, and that for s > 4, δ′2s(n) is a good approximation to r2s(n).

Again, s = 1 requires a special formula:


\delta'_2(n)=
\frac{\pi}{4}
\left(
\frac{c_1(4n+1)}{1}-
\frac{c_3(4n+1)}{3}+
\frac{c_5(4n+1)}{5}-
\frac{c_7(4n+1)}{7}+
\dots
\right)

If s is a multiple of 4,


\delta'_{2s}(n)=
\frac{(\frac12\pi)^s}{(s-1)!}\left(n+\frac{s}4\right)^{s-1}
\left(
\frac{c_1(n+\frac{s}4)}{1^s}+
\frac{c_3(n+\frac{s}4)}{3^s}+
\frac{c_5(n+\frac{s}4)}{5^s}+
\dots
\right)

If s is twice an odd number,


\delta'_{2s}(n)=
\frac{(\frac12\pi)^s}{(s-1)!}\left(n+\frac{s}4\right)^{s-1}
\left(
\frac{c_1(2n+\frac{s}2)}{1^s}+
\frac{c_3(2n+\frac{s}2)}{3^s}+
\frac{c_5(2n+\frac{s}2)}{5^s}+
\dots
\right)

If s is an odd number and s > 1,


\delta'_{2s}(n)=
\frac{(\frac12\pi)^s}{(s-1)!}\left(n+\frac{s}4\right)^{s-1}
\left(
\frac{c_1(4n+s)}{1^s}-
\frac{c_3(4n+s)}{3^s}+
\frac{c_5(4n+s)}{5^s}-
\dots
\right)

Therefore,


r'_2(n)=
\frac{\pi}{4}
\left(
\frac{c_1(4n+1)}{1}-
\frac{c_3(4n+1)}{3}+
\frac{c_5(4n+1)}{5}-
\frac{c_7(4n+1)}{7}+
\dots
\right)

r'_4(n)=
\left(\tfrac12\pi\right)^2\left(n+\tfrac12\right)
\left(
\frac{c_1(2n+1)}{1}+
\frac{c_3(2n+1)}{9}+
\frac{c_5(2n+1)}{25}+
\dots
\right)

r'_6(n)=
\frac{(\frac12\pi)^3}{2}\left(n+\tfrac34\right)^2
\left(
\frac{c_1(4n+3)}{1}-
\frac{c_3(4n+3)}{27}+
\frac{c_5(4n+3)}{125}-
\dots
\right)

r'_8(n)=
\frac{(\frac12\pi)^4}{6}(n+1)^3
\left(
\frac{c_1(n+1)}{1}+
\frac{c_3(n+1)}{81}+
\frac{c_5(n+1)}{625}+
\dots
\right)

[edit] Sums

Let


T_q(n) = 
c_q(1) + 
c_q(2)+
\dots+c_q(n)

and


U_q(n) = 
T_q(n) + 
\tfrac12\phi(q).


Then if s > 1,


\sigma_{-s}(1)+
\sigma_{-s}(2)+
\dots+
\sigma_{-s}(n)
=
\zeta(s+1)
\left(
n+
\frac{T_2(n)}{2^{s+1}}+
\frac{T_3(n)}{3^{s+1}}+
\frac{T_4(n)}{4^{s+1}}
+\dots
\right)
=
\zeta(s+1)
\left(
n+\tfrac12+
\frac{U_2(n)}{2^{s+1}}+
\frac{U_3(n)}{3^{s+1}}+
\frac{U_4(n)}{4^{s+1}}
+\dots
\right)-
\tfrac12\zeta(s)
,



d(1)+
d(2)+
\dots+
d(n)
=
-\frac{T_2(n)\log2}{2}
-\frac{T_3(n)\log3}{3}
-\frac{T_4(n)\log4}{4}
-\dots
,



d(1)\log1+
d(2)\log2+
\dots+
d(n)\log n
=
-\frac{T_2(n)(2\gamma\log2-\log^22)}{2}
-\frac{T_3(n)(2\gamma\log3-\log^23)}{3}
-\frac{T_4(n)(2\gamma\log4-\log^24)}{4}
-\dots
,



r_2(1)+
r_2(2)+
\dots+
r_2(n)
=
\pi
\left(
n
-\frac{T_3(n)}{3}
+\frac{T_5(n)}{5}
-\frac{T_7(n)}{7}
+\dots
\right)
.

[edit] See also

[edit] Notes

  1. ^ Ramanujan, S. "On Certain Trigonometric Sums and their Applications in the Theory of Numbers", Transactions of the Cambridge Philosophical Society, 22, No. 15, (1918), pp 259-276. (pp. 179-199 of his Collected Papers.) He says "These sums are obviously of great interest, and a few of their properties have been discussed already. But, so far as I know, they have never been considered from the point of view which I adopt in this paper; and I believe that all the results which it contains are new.", and in a footnote references pp. 360-370 of the Dirichlet-Dedekind Vorlesungen über Zahlentheorie, 4th ed.
  2. ^ Ramanujan, Papers, notes p. 343
  3. ^ Ramanujan, Papers, notes p. 371
  4. ^ Ramanujan, Papers, notes pp. 369-371
  5. ^ Ramanujan, op. cit.; Hardy, ch. IX (pp. 132-160); Hardy & Wright, Thms 292-293 (pp.250-251); Knopfmacher, ch. 7 (pp. 183-216)
  6. ^ Ramanujan, S., "On Certain Arithmetical Functions", Transactions of the Cambridge Philosophical Society, 22 No. 9, (1916), 159-184; Collected Papers pp. 136-163
  7. ^ Ramanujan, S., "On Certain Arithmetical Functions", Transactions of the Cambridge Philosophical Society, 22 No. 9, (1916), 159-184; Collected Papers pp. 136-163

[edit] References

  • Hardy, G. H. (1999), Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work, Providence RI: AMS / Chelsea, ISBN 978-0821820230 
  • Knopfmacher, John (1990), Abstract Analytic Number Theory, New York: Dover, ISBN 0-486-66344-2 
  • Ramanujan, Srinivasa (2000), Collected Papers, Providence RI: AMS / Chelsea, ISBN 978-0821820766 
Languages