Railway semaphore signal

From Wikipedia, the free encyclopedia

British style "somersault" semaphore signals in Victoria, Australia
British style "somersault" semaphore signals in Victoria, Australia

One of the earliest forms of fixed railway signal is the semaphore. These signals display their different indications to train drivers by changing the angle of inclination of a pivoted 'arm'. Semaphore signals were patented in the early 1840s by Joseph James Stevens, and soon became the most widely-used form of mechanical signal. Designs have altered over the intervening years, and colour light signals have replaced semaphore signals in some countries, but in others they remain in use.

Contents

[edit] Origins

The first railway semaphore was erected by Charles Hutton Gregory on the London and Croydon Railway (later the Brighton) at New Cross, southeast London, in the winter of 1842-1843 on the newly enlarged layout also accommodating the South Eastern Railway. The semaphore was afterwards rapidly adopted as a fixed signal throughout Britain, superseding all other types in most uses by 1870. Such signals were widely adopted in the U.S. after 1908.

[edit] Form

[edit] Components

The semaphore arm consists of two parts: A wooden or metal arm (or "blade") which pivots at different angles, and a spectacle holding coloured lenses which move in front of a lamp in order to provide indications at night. Usually these were combined into a single frame, though in some types (e.g. "somersault" signals in which the arm pivoted in the centre), the arm was separate from the spectacle. The arm projects horizontally in its most restrictive aspect; other angles indicate less restrictive aspects.

The appropriately coloured lens, depending on the arm's position, is illuminated from behind by either an oil lamp or an incandescent lamp run at a low voltage (white LED clusters have also been trialled for this purpose). For a green light, a blue coloured lens would often be fitted; this will appear as green due to the lamp's spectral content.

Materials that were commonly used to make signal posts for semaphore signals included timber, lattice steel, tubular steel and concrete. The Southern Railway in Great Britain frequently made use of old rail for signal posts.

[edit] Lower quadrant and upper quadrant

Lower quadrant stop signals at St. Erth in 2007
Lower quadrant stop signals at St. Erth in 2007

Semaphores come in lower quadrant and upper quadrant forms. In a lower quadrant signal, the arm pivots downwards for the less restrictive (known as "off") indication. Upper quadrant signals, as the name implies, pivot the arm upward for "off".

During the 1870s, all the British railway companies standardised on the use of semaphore signals, which were then invariably all of the lower quadrant type.[1] From the 1920s onwards, upper quadrant semaphores almost totally supplanted lower quadrant signals in Great Britain, except on former GWR lines. [2]

Current British practice mandates that semaphore signals, both upper and lower quadrant types, are inclined at an angle of 45 degrees from horizontal to display an "off" indication. [3]

[edit] Two-position and three-position signals

The first railway semaphore signals had arms that could be worked to three positions, in the lower quadrant. Used in conjunction with the time-interval system, the arm horizontal meant "danger", inclined downwards at 45 degrees meant "caution" and the arm vertical (arm hidden within the post) meant "clear". The vertical indication gradually came to be discontinued as the absolute block system superseded time-interval working.

A later development was the upper quadrant three-position semaphore signal. These worked in the upper quadrant to distinguish them from the then standard two-position lower quadrant semaphores. When the arm is inclined upwards at 45 degrees, the meaning is "caution" and the arm in the vertical position means "clear". Thus, three indications can be conveyed with just one arm and without the need for a distant arm on the same post. The early abandonment of the three-position semaphore signal in the UK allowed for the widespread replacement of two-position lower quadrant signals by two-position upper quadrant signals. [4]

[edit] Colouring and shape of arm

Red was quickly chosen as the best colour for semaphore arms as it was clearly visible against most backgrounds. To enhance the visibility of the arm, a marking of contrasting colour, such as a stripe or spot, is usually applied. The rear of the arm is usually coloured white with a black marking.

Where particularly poor background contrast cannot be avoided, a sighting board (usually painted white) can be placed behind the arm to provide adequate contrast which improves visibility. Alternatively, part of a bridge abutment conveniently located behind a signal may be painted white.

From 1872, distant signal arms (see below) were distinguished by having a "fishtail" notch cut into the end. All signal arms were still painted red at this time. In the 1920s, the British railway companies began to colour their distant signal arms yellow to better distinguish them from the red stop signals. The red lenses in distant signals were changed to yellow at the same time.

A third type of arm with a pointed end extending outward (in the opposite direction from the fishtail shape) may indicate "proceed at restricted speed after stopping" (and indeed, stopping itself is often waived for heavy freight ("tonnage") trains already moving at slow speed).

For most types of semaphore arm, the colour of light shown when the arm is in the "on" (most restrictive) position generally corresponds to the colour of the arm itself (i.e. red for a stop signal, yellow for a distant signal). When the arm is in the "off" position, a green light is displayed.

Other shapes and colours of semaphore arms were used for specific purposes in different countries around the world.

[edit] Operation

The first semaphore signals were controlled by levers situated at the signals. Some early signals protruded from the roof of the controlling signal box. Later, remote operation was effected by levers connected to the signal by wire or by pipes supported on rollers (US). The levers were grouped together in a building known as a "signal box" (UK) or "interlocking tower" (US).

Semaphore signals may be operated by electric motors or hydraulically, allowing them to be located further from the controlling signal box, or in some cases to work automatically. The signals are designed to be fail-safe so that if power is lost or a linkage is broken, the arm will move by gravity into the horizontal position. For lower quadrant semaphores this requires special counterweights to cause the arm to rise rather than fall; this is one of the reasons for the widespread switch to upper quadrant signals.

[edit] Usage

[edit] Stop signals

British semaphore stop signal (lower quadrant type)
British semaphore stop signal (lower quadrant type)

A stop signal or absolute signal (US English) is any signal whose most restrictive indication is 'danger' (which compels a stop). Stop signals are used to protect junctions, points ('switches' in American terminology), level crossings, movable bridges, platforms, or block sections.

A particular signal box may control one or more stop signals on each running line. In a traditional mechanically signalled area, it is most common for a signal box to have two stop signals governing each line. The first reached by a train is known as the home signal. The last stop signal, known as the starting or section signal, is usually located past the points etc. and controls entry to the block section ahead. The distance between the home and starting signals is usually quite short (typically a few hundred yards), and allows a train to wait for the section ahead of it to clear without blocking the line all the way back to the previous stop signal.

At some locations, more than one home signal might be provided on the same line. These will be identified by names such as outer home and inner home, or home 1, home 2 etc.

An advanced starting signal might be used at a location where it might be desirable to advance a train from a station platform before the section ahead becomes available. In this scenario, the starting signal permits the train to draw forward from the station area toward the advanced starting signal, which controls entry to the section ahead.

If any of the signals beyond the first stop signal are at 'danger', the previous signals will also be held at 'danger' until the train is almost at a stand, to indicate to the driver that the next signal is at 'danger'. This can be enforced by instruction or by electrical interlocking, which requires the provision of a track circuit on the approach to the signal.

In North America, the foregoing terminology was not used, as the development of American signalling practice diverged from that in the United Kingdom during the late nineteenth century. In America, where the term home signal is in common usage, it generally refers to the "generic" British definition of 'stop signal', namely any signal whose most restrictive indication is 'danger'.

[edit] Distant signals

British semaphore distant signal (lower quadrant type)
British semaphore distant signal (lower quadrant type)

A signal that provides advance warning of a stop signal ahead (and which does not compel a stop when in its most restrictive position) is referred to as distant signal. The term originated in British English and is used throughout the English-speaking world. In some regions, notably North America, the terms distant signal and approach signal are both in common usage.

Because of the long distance required to bring a moving train to a stand, distant signals must be located on the approach to the corresponding stop signal by at least the braking distance of the worst braked train to use the route. This is particularly important on high speed routes. At one time it was practice to take sighting distance into account when positioning distant signals; the distant signal could therefore be positioned at less than braking distance to the corresponding stop signal.

The driver of a train encountering a distant signal at 'caution' must expect the stop signal to be at 'danger' and must adjust the train's speed so as to bring the train to a stand before reaching it. The driver of a train encountering a distant signal in the 'clear' position knows that all applicable stop signals controlled by the same signal box are in the 'clear' position.

This is enforced by interlocking; the distant signal is prevented from assuming the 'clear' position unless all relevant stop signals controlled by the signal box display 'clear'.

A typical signal box layout. The crossover and level crossing are protected by the home signal, while a starting signal guards the entrance to the next block section.
A typical signal box layout. The crossover and level crossing are protected by the home signal, while a starting signal guards the entrance to the next block section.

[edit] Combined stop and distant signals

British semaphore stop and distant signals on common post (lower quadrant type)
British semaphore stop and distant signals on common post (lower quadrant type)

Where signals are closely spaced, a stop signal and a distant signal can be mounted on the same post. The distant signal is always the lower of the two. The two signals are "slotted" so that the distant signal can only clear if the stop signal is clear. Both signals display a light a night, which means that the 'danger' indication appears as red over yellow.

[edit] Shunting and subsidiary signals

Shunting signals and subsidiary signals also exist in semaphore form, with smaller arms and lights than are provided for main signals. These signals may also take the form of a disc with a horizontal stripe which is rotated 45 degrees to the clear position.

[edit] Train order signals

In North America, semaphores were employed as train order signals,[5] with the purpose of indicating to engineers whether they should stop to receive a telegraphed order. It was common for train order signals to point the arm straight down to indicate 'proceed'.

[edit] Non-railway uses

Railway-style semaphore signals have been used to control movements of boats or ships (e.g. at swing bridges) and also to control road traffic (e.g. at level crossings).

[edit] Decline in usage

Mechanical signals worldwide are being phased out in favour of colour light signals or, in some cases, signalling systems that do not require lineside signals (e.g. RETB and the new European system ERTMS).

[edit] References

  1. ^ Vanns, M.A., (1997), An Illustrated History of Signalling, Ian Allan, ISBN 0-7110-2551-7, p.25
  2. ^ Vanns, M.A., (1995), Signalling in the Age of Steam, Ian Allan, ISBN 0-7110-2350-6, p.80
  3. ^ Railway Group Standard GK/RT0031
  4. ^ Vanns, M.A., (1997), An Illustrated History of Signalling, Ian Allan, ISBN 0-7110-2551-7, p.75
  5. ^ Train Order Signals

[edit] See also