RAD50 (gene)

From Wikipedia, the free encyclopedia


RAD50 homolog (S. cerevisiae)
Identifiers
Symbol(s) RAD50; RAD50-2; hRad50
External IDs OMIM: 604040 MGI109292 HomoloGene38092
RNA expression pattern

More reference expression data

Orthologs
Human Mouse
Entrez 10111 19360
Ensembl ENSG00000113522 ENSMUSG00000020380
Uniprot Q92878 Q3UNL2
Refseq NM_005732 (mRNA)
NP_005723 (protein)
NM_009012 (mRNA)
NP_033038 (protein)
Location Chr 5: 131.92 - 132.01 Mb Chr 11: 53.49 - 53.55 Mb
Pubmed search [1] [2]

RAD50 homolog (S. cerevisiae), also known as RAD50, is a human gene.[1]

The protein encoded by this gene is highly similar to Saccharomyces cerevisiae Rad50, a protein involved in DNA double-strand break repair. This protein forms a complex with MRE11 and NBS1. The protein complex binds to DNA and displays numerous enzymatic activities that are required for nonhomologous joining of DNA ends. This protein, cooperating with its partners, is important for DNA double-strand break repair, cell cycle checkpoint activation, telomere maintenance, and meiotic recombination. Knockout studies of the mouse homolog suggest this gene is essential for cell growth and viability. Two alternatively spliced transcript variants of this gene, which encode distinct proteins, have been reported.[1]

[edit] References

[edit] Further reading

  • Stracker TH, Theunissen JW, Morales M, Petrini JH (2005). "The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together.". DNA Repair (Amst.) 3 (8-9): 845–54. doi:10.1016/j.dnarep.2004.03.014. PMID 15279769. 
  • Dolganov GM, Maser RS, Novikov A, et al. (1996). "Human Rad50 is physically associated with human Mre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair.". Mol. Cell. Biol. 16 (9): 4832–41. PMID 8756642. 
  • Maser RS, Monsen KJ, Nelms BE, Petrini JH (1997). "hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks.". Mol. Cell. Biol. 17 (10): 6087–96. PMID 9315668. 
  • Carney JP, Maser RS, Olivares H, et al. (1998). "The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response.". Cell 93 (3): 477–86. PMID 9590181. 
  • Paull TT, Gellert M (1998). "The 3' to 5' exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks.". Mol. Cell 1 (7): 969–79. PMID 9651580. 
  • Trujillo KM, Yuan SS, Lee EY, Sung P (1998). "Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95.". J. Biol. Chem. 273 (34): 21447–50. PMID 9705271. 
  • Paull TT, Gellert M (1999). "Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex.". Genes Dev. 13 (10): 1276–88. PMID 10346816. 
  • Kim KK, Shin BA, Seo KH, et al. (1999). "Molecular cloning and characterization of splice variants of human RAD50 gene.". Gene 235 (1-2): 59–67. PMID 10415333. 
  • Zhong Q, Chen CF, Li S, et al. (1999). "Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response.". Science 285 (5428): 747–50. PMID 10426999. 
  • Wang Y, Cortez D, Yazdi P, et al. (2000). "BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures.". Genes Dev. 14 (8): 927–39. PMID 10783165. 
  • Gatei M, Young D, Cerosaletti KM, et al. (2000). "ATM-dependent phosphorylation of nibrin in response to radiation exposure.". Nat. Genet. 25 (1): 115–9. doi:10.1038/75508. PMID 10802669. 
  • Zhao S, Weng YC, Yuan SS, et al. (2000). "Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products.". Nature 405 (6785): 473–7. doi:10.1038/35013083. PMID 10839544. 
  • Zhu XD, Küster B, Mann M, et al. (2000). "Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres.". Nat. Genet. 25 (3): 347–52. doi:10.1038/77139. PMID 10888888. 
  • Paull TT, Rogakou EP, Yamazaki V, et al. (2001). "A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage.". Curr. Biol. 10 (15): 886–95. PMID 10959836. 
  • Xiao J, Liu CC, Chen PL, Lee WH (2001). "RINT-1, a novel Rad50-interacting protein, participates in radiation-induced G(2)/M checkpoint control.". J. Biol. Chem. 276 (9): 6105–11. doi:10.1074/jbc.M008893200. PMID 11096100. 
  • Desai-Mehta A, Cerosaletti KM, Concannon P (2001). "Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization.". Mol. Cell. Biol. 21 (6): 2184–91. doi:10.1128/MCB.21.6.2184-2191.2001. PMID 11238951. 
  • Buscemi G, Savio C, Zannini L, et al. (2001). "Chk2 activation dependence on Nbs1 after DNA damage.". Mol. Cell. Biol. 21 (15): 5214–22. doi:10.1128/MCB.21.15.5214-5222.2001. PMID 11438675. 
  • Chiba N, Parvin JD (2001). "Redistribution of BRCA1 among four different protein complexes following replication blockage.". J. Biol. Chem. 276 (42): 38549–54. doi:10.1074/jbc.M105227200. PMID 11504724. 
  • Grenon M, Gilbert C, Lowndes NF (2001). "Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex.". Nat. Cell Biol. 3 (9): 844–7. doi:10.1038/ncb0901-844. PMID 11533665. 
  • de Jager M, van Noort J, van Gent DC, et al. (2002). "Human Rad50/Mre11 is a flexible complex that can tether DNA ends.". Mol. Cell 8 (5): 1129–35. PMID 11741547.