Image:RadarDistanceRindler.png

From Wikipedia, the free encyclopedia

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.
This image should be recreated using vector graphics as an SVG file. This has several advantages; see Commons:Media for cleanup for more information. If an SVG form of this image is already available, please upload it. After uploading an SVG, replace this template with template {{Vector version available|new image name.svg}} in this image.

العربية | Български | Català | Česky | Dansk | Deutsch | English | Esperanto | Español | Français | 한국어 | Italiano | Magyar | Lietuvių | Nederlands | 日本語 | Polski | Português | Română | Русский | Suomi | Svenska | Türkçe | Українська | Tiếng Việt | मराठी | ‪中文(繁體)‬ | ‪中文(简体)‬ | +/-

[edit] Summary

The concept of "radar distance" for illustrated in the Rindler chart

ds^2 = -x^2 \, dt^2 + dx^2 + dy^2 + dz^2, \; \; 0 < x < \infty, \; -\infty < t, y, z < \infty

for the Minkowski vacuum (flat spacetime). The vertical red line at far left is the Rindler horizon x = 0. Also shown (two vertical navy lines) are two Rindler observers with x = 1,2 respectively, who are accelerating with constant magnitude 1, \frac{1}{2} respectively. The leftmost observer sends a radio signal which bounces off the rightmost observer and returns. He measures the time required by this round trip radar signal, using an ideal clock which he carries, and divides by two to obtain the radar distance to the other observer. This notion of distance agrees very nearly with the ruler distance for small distances, but in general gives a smaller value. However, both notions of distance do give the crucial result that the Rindler observers maintain constant distance from one another.

In the figure, the light cones are correctly scaled to suggest the relative time dilation of the two observers, due to their acceleration; recall that the leftmost observer is accelerating twice as hard.

This png image was converted using eog from a jpg image created by User:Hillman using Maple.

[edit] Licensing

Hillman, the copyright holder of this work, has published or hereby publishes it under the following license:
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation license, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation license".

Aragonés | العربية | Asturianu | Български | বাংলা | ইমার ঠার/বিষ্ণুপ্রিয়া মণিপুরী | Brezhoneg | Bosanski | Català | Cebuano | Česky | Dansk | Deutsch | Ελληνικά | English | Esperanto | Español | Eesti | Euskara | فارسی | Suomi | Français | Gaeilge | Galego | עברית | Hrvatski | Magyar | Bahasa Indonesia | Ido | Íslenska | Italiano | 日本語 | ქართული | ភាសាខ្មែរ | 한국어 | Kurdî / كوردی | Latina | Lëtzebuergesch | Lietuvių | Bahasa Melayu | Nnapulitano | Nederlands | ‪Norsk (nynorsk)‬ | ‪Norsk (bokmål)‬ | Occitan | Polski | Português | Română | Русский | Slovenčina | Slovenščina | Shqip | Српски / Srpski | Svenska | తెలుగు | ไทย | Türkçe | Українська | اردو | Tiếng Việt | Volapük | Yorùbá | ‪中文(中国大陆)‬ | ‪中文(台灣)‬ | +/-

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current13:12, 17 April 2007400×400 (17 KB)Melirius ({{ShouldBeSVG}} == Summary == The concept of ''"radar distance"'' for illustrated in the Rindler chart :<math>ds^2 = -x^2 \, dt^2 + dx^2 + dy^2 + dz^2, \; \; 0 < x < \infty, \; -\infty < t, y, z < \infty</math> for the Minkowski vacuum (flat spacetime). )
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):