RABEP1
From Wikipedia, the free encyclopedia
Rabaptin, RAB GTPase binding effector protein 1
|
|||||
PDB rendering based on 1tu3. | |||||
Available structures: 1tu3, 1x79 | |||||
Identifiers | |||||
Symbol(s) | RABEP1; RAB5EP; RABPT5 | ||||
External IDs | OMIM: 603616 MGI: 1860236 HomoloGene: 3451 | ||||
|
|||||
RNA expression pattern | |||||
Orthologs | |||||
Human | Mouse | ||||
Entrez | 9135 | 54189 | |||
Ensembl | ENSG00000029725 | ENSMUSG00000020817 | |||
Uniprot | Q15276 | Q5QNU3 | |||
Refseq | NM_004703 (mRNA) NP_004694 (protein) |
NM_019400 (mRNA) NP_062273 (protein) |
|||
Location | Chr 17: 5.13 - 5.23 Mb | Chr 11: 70.66 - 70.76 Mb | |||
Pubmed search | [1] | [2] |
Rabaptin, RAB GTPase binding effector protein 1, also known as RABEP1, is a human gene.[1]
[edit] References
[edit] Further reading
- Stenmark H, Vitale G, Ullrich O, Zerial M (1996). "Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion.". Cell 83 (3): 423-32. PMID 8521472.
- Xiao GH, Shoarinejad F, Jin F, et al. (1997). "The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis.". J. Biol. Chem. 272 (10): 6097-100. PMID 9045618.
- Vitale G, Rybin V, Christoforidis S, et al. (1998). "Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound Rab4 and Rab5.". EMBO J. 17 (7): 1941-51. doi: . PMID 9524117.
- Neve RL, Coopersmith R, McPhie DL, et al. (1998). "The neuronal growth-associated protein GAP-43 interacts with rabaptin-5 and participates in endocytosis.". J. Neurosci. 18 (19): 7757-67. PMID 9742146.
- Swanton E, Bishop N, Woodman P (2000). "Human rabaptin-5 is selectively cleaved by caspase-3 during apoptosis.". J. Biol. Chem. 274 (53): 37583-90. PMID 10608812.
- Nagelkerken B, Van Anken E, Van Raak M, et al. (2000). "Rabaptin4, a novel effector of the small GTPase rab4a, is recruited to perinuclear recycling vesicles.". Biochem. J. 346 Pt 3: 593-601. PMID 10698684.
- Hirst J, Lui WW, Bright NA, et al. (2000). "A family of proteins with gamma-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome.". J. Cell Biol. 149 (1): 67-80. PMID 10747088.
- Korobko IV, Korobko EV, Kiselev SL (2001). "The MAK-V protein kinase regulates endocytosis in mouse.". Mol. Gen. Genet. 264 (4): 411-8. PMID 11129044.
- Zhu Y, Doray B, Poussu A, et al. (2001). "Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6-phosphate receptor.". Science 292 (5522): 1716-8. doi: . PMID 11387476.
- Valsdottir R, Hashimoto H, Ashman K, et al. (2001). "Identification of rabaptin-5, rabex-5, and GM130 as putative effectors of rab33b, a regulator of retrograde traffic between the Golgi apparatus and ER.". FEBS Lett. 508 (2): 201-9. PMID 11718716.
- de Renzis S, Sönnichsen B, Zerial M (2002). "Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes.". Nat. Cell Biol. 4 (2): 124-33. doi: . PMID 11788822.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899-903. doi: . PMID 12477932.
- Mattera R, Arighi CN, Lodge R, et al. (2003). "Divalent interaction of the GGAs with the Rabaptin-5-Rabex-5 complex.". EMBO J. 22 (1): 78-88. doi: . PMID 12505986.
- Mattera R, Puertollano R, Smith WJ, Bonifacino JS (2004). "The trihelical bundle subdomain of the GGA proteins interacts with multiple partners through overlapping but distinct sites.". J. Biol. Chem. 279 (30): 31409-18. doi: . PMID 15143060.
- Jin J, Smith FD, Stark C, et al. (2004). "Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization.". Curr. Biol. 14 (16): 1436-50. doi: . PMID 15324660.
- Kimura K, Wakamatsu A, Suzuki Y, et al. (2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.". Genome Res. 16 (1): 55-65. doi: . PMID 16344560.
- Ewing RM, Chu P, Elisma F, et al. (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry.". Mol. Syst. Biol. 3: 89. doi: . PMID 17353931.