User:R36/Sandbox

From Wikipedia, the free encyclopedia

Differentiation formulas
(Assume f(x) and g(x) exist, a and c are constants)
  Integration formulas
1.
y = c\cdot x^n \rightarrow \frac{dy}{dx} = c\cdot nx^{n-1}
2.
y = f(x)\cdot g(x) \rightarrow \frac{dy}{dx} = f(x)\cdot g'(x)+g(x)\cdot f'(x)
  20.
\int u^n \, du = \frac{u^{n+1}}{n+1}+c~(\mbox{if}~n \ne 1)
21.
\int \frac{du}{u} = \ln |u|+c
3.
y = \frac{f(x)}{g(x)} \rightarrow \frac{dy}{dx} = \frac{g(x)\cdot f'(x)-f(x)\cdot g'(x)}{[g(x)]^2}
4.
y = [f(x)]^n \rightarrow \frac{dy}{dx} = n\cdot [f(x)]^{n-1}\cdot f'(x)
  22.
\int \sin u\, du = -\cos u + c
23.
\int \cos u\, du = \sin u + c
5.
y = \sin f(x) \rightarrow \frac{dy}{dx} = [\cos f(x)]\cdot f'(x)
6.
y = \cos f(x) \rightarrow \frac{dy}{dx} = [-\sin f(x)]\cdot f'(x)
  24.
\int \tan u\,  du = -\ln |\cos u| + c
25.
\int \cot u\,  du = \ln |\sin u| + c
7.
y = \tan f(x) \rightarrow \frac{dy}{dx} = [\sec^2 f(x)]\cdot f'(x)
8.
y = \cot f(x) \rightarrow \frac{dy}{dx} = [-\csc^2 f(x)]\cdot f'(x)
  26. \int \sec^2 u\,  du = \tan u + c 27. \int \csc^2 u\,  du = -\cot u + c
9.
y = \sec f(x) \rightarrow \frac{dy}{dx} = [\sec f(x)\cdot \tan f(x)]\cdot f'(x)
10.
y = \csc f(x) \rightarrow \frac{dy}{dx} = [-\csc f(x)\cdot \cot f(x)]\cdot f'(x)
  28.
\int \sec u\cdot \tan u\,  du = \sec u + c
29.
\int \csc u\cdot \cot u\,  du = -\csc u + c
11.
y = \ln f(x) \rightarrow \frac{dy}{dx} = \frac{f'(x)}{f(x)}
12.
y = \log_a f(x) \rightarrow \frac{dy}{dx} = \frac{f'(x)}{f(x)\cdot \ln a}
  30. \int \sec u\,  du = \ln |\sec u + \tan u| + c 31. \int \csc u\,  du = -\ln |\csc u + \cot u| + c
13.
y = e^{f(x)} \rightarrow \frac{dy}{dx} = e^{f(x)}\cdot f'(x)
14.
y = \sin^{-1} f(x) \rightarrow \frac{dy}{dx} = \frac{f'(x)}{\sqrt{1-[f(x)]^2}}
  32.
\int e^u\,  du = e^u + c
33.
\int a^u\,  du = \frac{a^u}{\ln a} + c
15.
y = \cos^{-1} f(x) \rightarrow \frac{dy}{dx} = \frac{-f'(x)}{\sqrt{1-[f(x)]^2}}
16.
y = \tan^{-1} f(x) \rightarrow \frac{dy}{dx} = \frac{f'(x)}{1+[f(x)]^2}
  34.
\int \frac{du}{\sqrt{a^2-u^2}} = \sin^{-1} \frac{u}{a} + c~(\mbox{if}~a > 0)
35.
\int \frac{du}{a^2-u^2} = \frac{1}{a}\tan^{-1} \frac{u}{a} + c~(\mbox{if}~a \ne 0)
17.
y = \cot^{-1} f(x) \rightarrow \frac{dy}{dx} = \frac{-f'(x)}{1+[f(x)]^2}
18.
y = \sec^{-1} f(x) \rightarrow \frac{dy}{dx} = \frac{f'(x)}{f(x)\cdot \sqrt{[f(x)]^2-1}}
  36.
\int \frac{du}{u\sqrt{u^2-a^2}} = \frac{1}{a}\sec^{-1} \frac{u}{a} + c~(\mbox{if}~a > 0)
 
19.
y = \csc^{-1} f(x) \rightarrow \frac{dy}{dx} = \frac{-f'(x)}{f(x)\cdot \sqrt{[f(x)]^2-1}}
    37. Integration by Parts
\int u\,dv = uv - \int v\,du