Quasi-Frobenius Lie algebra

From Wikipedia, the free encyclopedia

In mathematics, a quasi-Frobenius Lie algebra

(\mathfrak{g},[\,\,\,,\,\,\,],\beta )

over a field k is a Lie algebra

(\mathfrak{g},[\,\,\,,\,\,\,] )

equipped with a nondegenerate skew-symmetric bilinear form

\beta : \mathfrak{g}\times\mathfrak{g}\to k, which is a Lie algebra 2-cocycle of \mathfrak{g} with values in k. In other words,
 \beta \left(\left[X,Y\right],Z\right)+\beta \left(\left[Z,X\right],Y\right)+\beta \left(\left[Y,Z\right],X\right)=0

for all X, Y, Z in \mathfrak{g}.

[edit] See also

[edit] References

  • Jacobson, Nathan, Lie algebras, Republication of the 1962 original. Dover Publications, Inc., New York, 1979. ISBN 0-486-63832-4
  • Vyjayanthi Chari and Andrew Pressley, A Guide to Quantum Groups, (1994), Cambridge University Press, Cambridge ISBN 0-521-55884-0.