Quark-Lepton complementarity
From Wikipedia, the free encyclopedia
The introduction to this article provides insufficient context for those unfamiliar with the subject. Please help improve the article with a good introductory style. |
This article does not cite any references or sources. (April 2007) Please help improve this article by adding citations to reliable sources. Unverifiable material may be challenged and removed. |
Recent neutrino experiments confirm that the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton mixing matrix UPMNS contains large mixing angles. For example the atmospheric mixing is compatible with , and the solar mixing is . These results should be compared with the third lepton mixing angle which is very small and even compatible with zero, and with the quark mixing angles in the Cabibbo-Kobayashi-Maskawa matrix UCKM.
The disparity that nature indicates between quark and lepton mixing angles has been viewed in terms of a 'quark-lepton complementarity' (QLC) which can be expressed in the relations
Possible consequences of QLC have been investigated in the literature and in particular a simple correspondence between the UPMNS and UCKM matrices has been proposed and analyzed in terms of a correlation matrix. The correlation matrix VM is simply defined as the product of the CKM and PMNS matrices, , and efforts have been made to obtain the most favorite pattern for the matrix VM. Unitarity then implies and one may ask where do the large lepton mixings come from? Is this information implicit in the form of the VM matrix? This question has been widely investigated in the literature, but its answer is still open.
Furthermore in some Grand Unification Theories (GUTs) the direct QLC correlation between the CKM and the PMNS mixing matrix can be obtained. In this class of models, the VM matrix is determined by the heavy Majorana neutrino mass matrix.
Despite the naive relations between the PMNS and CKM angles, a detailed analysis shows that the correlation matrix is phenomenologically compatible with a tribimaximal pattern, and only marginally with a bimaximal pattern.
It is possible to include bimaximal forms of the correlation matrix VM in models with renormalization effects that are relevant, however, only in particular cases with large tanĪ²( > 40) and with quasi degenerate neutrino masses.
[edit] References
- Bhag C. Chauhan, Marco Picariello, Joao Pulido, Emilio Torrente-Lujan,
"Quark-lepton complementarity, neutrino and standard model data predict ", "DOI: 10.1140/epjc/s10052-007-0212-z".