q-Vandermonde identity

From Wikipedia, the free encyclopedia

In mathematics, in the field of combinatorics, the q-Vandermonde identity is the q-analogue of the Chu-Vandermonde identity


\begin{bmatrix}
m + n\\
k
\end{bmatrix}_q
=
\sum_{j} 
\begin{bmatrix}
m\\
k - j
\end{bmatrix}_q
\begin{bmatrix}
n\\
j
\end{bmatrix}_q
q^{j(m-k+j)}.

The proof follows from observing the q-binomial identity with q-commuting operators (namely BA = qAB).

[edit] Other conventions

In the conventions common in applications to quantum groups, where the q-binomial is symmetric under exchanging q and q − 1, the q-Vandermonde identity reads


\begin{bmatrix}
m + n\\
k
\end{bmatrix}_q
=
q^{m k}
\sum_{j=0}^{n}
q^{-(m+n)j} 
\begin{bmatrix}
m\\
k - j
\end{bmatrix}_q
\begin{bmatrix}
n\\
j
\end{bmatrix}_q.

[edit] Proof

Assume that A and B are operators that q-commute:


BA = qAB.\,

Then:


(A + B)^m(A + B)^n \,

= \left(\sum_{i=0}^m
\begin{bmatrix}
m\\
i
\end{bmatrix}_{q}A^{i}B^{m-i}\right)
\left(\sum_{j=0}^n
\begin{bmatrix}
n\\
j
\end{bmatrix}_{q}A^{j}B^{n-j}\right)
 = \sum_{i,j}
\begin{bmatrix}
m\\
i
\end{bmatrix}_q
\begin{bmatrix}
n\\
j
\end{bmatrix}_{q}A^{i}B^{m-i}A^{j}B^{n-j}
 = \sum_{i,j}
\begin{bmatrix}
m\\
i
\end{bmatrix}_q
\begin{bmatrix}
n\\
j
\end{bmatrix}_{q}q^{j(m-i)}A^{i+j}B^{m+n-i-j}.

This makes use of the fact that

 BA^2 = BAA = qABA = q^2AAB = q^2A^2B. \,

Now, consider the coefficient of A^{k}B^{m+n-k}\, in this expression. This gives

 \sum_{j}
\begin{bmatrix}
m\\
k-j
\end{bmatrix}_q
\begin{bmatrix}
n\\
j
\end{bmatrix}_{q}q^{j(m-k+j)}.

Now, from the q-binomial theory, we recognize that  (A+B)^m(A+B)^n=(A+B)^{m+n}\, And thus, the coefficient of A^{k}B^{m+n-k}\, is


\begin{bmatrix}
m+n\\
k
\end{bmatrix}_q.

Combining the results gives


\begin{bmatrix}
m + n\\
k
\end{bmatrix}_q
=
\sum_{j} 
\begin{bmatrix}
m\\
k - j
\end{bmatrix}_q
\begin{bmatrix}
n\\
j
\end{bmatrix}_q
q^{j(m-k+j)}.

 \mathrm{QED}\,