Pushforward measure

From Wikipedia, the free encyclopedia

In mathematics, a pushforward measure (also push forward or push-forward) is obtained by transferring ("pushing forward") a measure from one measurable space to another using a measurable function.

[edit] Definition

Given measurable spaces (X1, Σ1) and (X2, Σ2), a measurable function f : X1 → X2 and a measure μ : Σ1 → [0, +∞], the pushforward of μ is defined to be the measure f(μ) : Σ2 → [0, +∞] given by

(f_{*} (\mu)) (B) = \mu \left( f^{-1} (B) \right) \mbox{ for } B \in \Sigma_{2}.

This definition applies mutatis mutandis for a signed or complex measure.

[edit] Examples and applications

  • A natural "Lebesgue measure" on the unit circle S1 (here thought of as a subset of the complex plane C) may be defined using a push-forward construction and Lebesgue measure λ on the real line R. Let λ also denote the restriction of Lebesgue measure to the interval [0, 2π) and let f : [0, 2π) → S1 be the natural bijection defined by f(t) = exp(i t). The natural "Lebesgue measure" on S1 is then the push-forward measure f(λ). The measure f(λ) might also be called "arc length measure" or "angle measure", since the f(λ)-measure of an arc in S1 is precisely is its arc length (or, equivalently, the angle that it subtends at the centre of the circle.)
  • The previous example extends nicely to give a natural "Lebesgue measure" on the n-dimensional torus Tn. The previous example is a special case, since S1 = T1. This Lebesgue measure on Tn is, up to normalization, the Haar measure for the compact, connected Lie group Tn.
  • Consider a measurable function f : XX and the composition of f with itself n times:
f^{(n)} = \underbrace{f \circ f \circ \dots \circ f}_{n \mathrm{\, times}} : X \to X.
This forms a measurable dynamical system. It is often of interest in the study of such systems to find a measure μ on X that the map f leaves unchanged, a so-called invariant measure, one for which f(μ) = μ.
  • One can also consider quasi-invariant measures for such a dynamical system: a measure μ on X is called quasi-invariant under f if the push-forward of μ by f is merely equivalent to the original measure μ, not necessarily equal to it.
Languages