Purple sulfur bacteria

From Wikipedia, the free encyclopedia

Purple sulfur bacteria
Scientific classification
Kingdom: Bacteria
Phylum: Proteobacteria
Class: Gamma Proteobacteria
Order: Chromatiales
Families

Chromatiaceae
Ectothiorhodospiraceae
Halothiobacillaceae

The purple sulfur bacteria are a group of Proteobacteria capable of photosynthesis, collectively referred to as purple bacteria. They are anaerobic or microaerophilic, and are often found in hot springs or stagnant water. Unlike plants , algae, and cyanobacteria, they do not use water as their reducing agent, and so do not produce oxygen. Instead they use hydrogen sulfide, which is oxidized to produce granules of elemental sulfur. This in turn may be oxidized to form sulfuric acid.

The purple sulfur bacteria are divided into two families, the Chromatiaceae and Ectothiorhodospiraceae, which respectively produce internal and external sulfur granules, and show differences in the structure of their internal membranes. They make up the order Chromatiales, included in the gamma subdivision of the Proteobacteria. The genus Halothiobacillus is also included in the Chromatiales, in its own family, but it is not photosynthetic.

Purple sulfur bacteria are generally found in illuminated anoxic zones of lakes and other aquatic habitats where hydrogen sulfide accumulates and also in "sulfur springs" where geochemically or biologically produced hydrogen sulfide can trigger the formation of blooms of purple sulfur bacteria. Anoxic conditions are required for photosynthesis; these bacteria cannot thrive in oxygenated environments.[1]

The most favorable lakes for the development of purple sulfur bacteria are meromictic (permanently stratified) lakes. Meromictic lakes stratify because they have denser (usually saline) water in the bottom and less dense (usually freshwater) nearer the surface. If sufficient sulfate is present to support sulfate reduction, the sulfide, produced in the sediments, diffuses upward into the anoxic bottom waters, and here purple sulfur bacteria can form dense cell masses, called blooms, usually in association with green phototrophic bacteria.

[edit] See also

[edit] References

  1. ^ Proctor, Lita M. (1997). "Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with pelagic copepods," Aquatic Microbial Ecology Vol. 12, 105-113.