Pseudotensor

From Wikipedia, the free encyclopedia

In physics and mathematics, a pseudotensor is usually a quantity that transforms like a tensor under a proper rotation, but gains an additional sign flip under an improper rotation (a transformation that can be expressed as an inversion followed by a proper rotation).

There is a second meaning for pseudotensor, restricted to general relativity; tensors obey strict transformation laws, whilst pseudotensors are not so constrained. Consequently the form of a pseudotensor will, in general, change as the frame of reference is altered. An equation which holds in a frame containing pseudotensors will not necessarily hold in a different frame; this makes pseudotensors of limited relevance because they are not invariant.

Contents

[edit] Definition

Two quite different mathematical objects are called a pseudotensor in different contexts.

The first context is essentially a tensor multiplied by an extra sign factor, such that the pseudotensor changes sign under reflections when a normal tensor does not. According to one definition, a pseudotensor P of the type (p,q) is a geometric object whose components in an arbitrary basis are enumerated by (p + q) indices and obey the transformation rule

\hat{P}^{i_1\ldots i_q}_{\,j_1\ldots j_p} =
(-1)^A A^{i_1} {}_{k_1}\cdots A^{i_q} {}_{k_q}
B^{l_1} {}_{j_1}\cdots B^{l_p} {}_{j_p}
P^{k_1\ldots k_q}_{l_1\ldots l_p}

under a change of basis.[1][2][3]

Here \hat{P}^{i_1\ldots i_q}_{\,j_1\ldots j_p}, P^{k_1\ldots k_q}_{l_1\ldots l_p} are the components of the pseudotensor in the new and old bases, respectively, A^{i_q} {}_{k_q} is the transition matrix for the contravariant indices, B^{l_p} {}_{j_p} is the transition matrix for the covariant indices, and  (-1)^A = \mathrm{sign}(\det(A^{i_q} {}_{k_q})) = \pm{1}. This transformation rule differs from the rule for an ordinary tensor in the intermediate treatment only by the presence of the factor (-1)A.

The second context where the word "pseudotensor" is used is General Relativity. In that theory, one cannot describe the energy and momentum of the gravitational field by an energy-momentum tensor. Instead, one introduces objects that behave as tensors only with respect to restricted coordinate transformations. Strictly speaking, such objects are not tensors at all. An example of such pseudotensor is the Landau-Lifshitz pseudotensor.

[edit] References

  1. ^ Sharipov, R.A. (1996). Course of Differential Geometry, Ufa:Bashkir State University, Russia, p. 34, eq. 6.15. ISBN 5-7477-0129-0 [arXiv:math/0412421v1]
  2. ^ Lawden, Derek F. (1982). An Introduction to Tensor Calculus, Relativity and Cosmology. Chichester:John Wiley & Sons Ltd., p. 29, eq. 13.1. ISBN 0-471-10082-X
  3. ^ Borisenko, A. I. and Tarapov, I. E. (1968). Vector and Tensor Analysis with Applications, New York:Dover Publications, Inc. , p. 124, eq. 3.34. ISBN 0-486-63833-2

[edit] See also

[edit] External links