From Wikipedia, the free encyclopedia
Log page index: User:ProteinBoxBot/PBB_Log_Index
[edit] Protein Status Quick Log - Date: 00:55, 15 November 2007 (UTC)
[edit] Proteins without matches (10)
[edit] Proteins with a High Potential Match (8)
[edit] Redirected Proteins (7)
[edit] Manual Inspection (Page not found) (18)
[edit] Updated (7)
[edit] Protein Status Grid - Date: 00:55, 15 November 2007 (UTC)
[edit] Vebose Log - Date: 00:55, 15 November 2007 (UTC)
- INFO: Beginning work on ALDH2... {November 14, 2007 4:31:28 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 4:31:59 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_ALDH2_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1a4z.
| PDB = {{PDB2|1a4z}}, {{PDB2|1ag8}}, {{PDB2|1cw3}}, {{PDB2|1nzw}}, {{PDB2|1nzx}}, {{PDB2|1nzz}}, {{PDB2|1o00}}, {{PDB2|1o01}}, {{PDB2|1o02}}, {{PDB2|1o04}}, {{PDB2|1o05}}, {{PDB2|1of7}}, {{PDB2|1zum}}, {{PDB2|2onm}}, {{PDB2|2onn}}, {{PDB2|2ono}}, {{PDB2|2onp}}
| Name = Aldehyde dehydrogenase 2 family (mitochondrial)
| HGNCid = 404
| Symbol = ALDH2
| AltSymbols =; ALDH-E2; ALDHI; ALDM; MGC1806
| OMIM = 100650
| ECnumber =
| Homologene = 55480
| MGIid = 99600
| GeneAtlas_image1 = PBB_GE_ALDH2_201425_at_tn.png
| Function = {{GNF_GO|id=GO:0004029 |text = aldehyde dehydrogenase (NAD) activity}} {{GNF_GO|id=GO:0004030 |text = aldehyde dehydrogenase [NAD(P)+] activity}} {{GNF_GO|id=GO:0009055 |text = electron carrier activity}} {{GNF_GO|id=GO:0016491 |text = oxidoreductase activity}}
| Component = {{GNF_GO|id=GO:0005739 |text = mitochondrion}}
| Process = {{GNF_GO|id=GO:0005975 |text = carbohydrate metabolic process}} {{GNF_GO|id=GO:0006066 |text = alcohol metabolic process}} {{GNF_GO|id=GO:0008152 |text = metabolic process}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 217
| Hs_Ensembl = ENSG00000111275
| Hs_RefseqProtein = NP_000681
| Hs_RefseqmRNA = NM_000690
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 12
| Hs_GenLoc_start = 110688729
| Hs_GenLoc_end = 110732165
| Hs_Uniprot = P05091
| Mm_EntrezGene = 11669
| Mm_Ensembl = ENSMUSG00000029455
| Mm_RefseqmRNA = NM_009656
| Mm_RefseqProtein = NP_033786
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 5
| Mm_GenLoc_start = 121828319
| Mm_GenLoc_end = 121854203
| Mm_Uniprot = Q3TVM2
}}
}}
'''Aldehyde dehydrogenase 2 family (mitochondrial)''', also known as '''ALDH2''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = This protein belongs to the aldehyde dehydrogenase family of proteins. Aldehyde dehydrogenase is the second enzyme of the major oxidative pathway of alcohol metabolism. Two major liver isoforms of this enzyme, cytosolic and mitochondrial, can be distinguished by their electrophoretic mobilities, kinetic properties, and subcellular localizations. Most Caucasians have two major isozymes, while approximately 50% of Orientals have only the cytosolic isozyme, missing the mitochondrial isozyme. A remarkably higher frequency of acute alcohol intoxication among Orientals than among Caucasians could be related to the absence of the mitochondrial isozyme. This gene encodes a mitochondrial isoform, which has a low Km for acetaldehydes, and is localized in mitochondrial matrix.<ref>{{cite web | title = Entrez Gene: ALDH2 aldehyde dehydrogenase 2 family (mitochondrial)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=217| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Yoshida A |title=Molecular genetics of human aldehyde dehydrogenase. |journal=Pharmacogenetics |volume=2 |issue= 4 |pages= 139-47 |year= 1993 |pmid= 1306115 |doi= }}
*{{cite journal | author=Chao YC, Liou SR, Tsai SF, Yin SJ |title=Dominance of the mutant ALDH2(2) allele in the expression of human stomach aldehyde dehydrogenase-2 activity. |journal=Proc. Natl. Sci. Counc. Repub. China B |volume=17 |issue= 3 |pages= 98-102 |year= 1994 |pmid= 8290656 |doi= }}
*{{cite journal | author=Seitz HK, Meier P |title=The role of acetaldehyde in upper digestive tract cancer in alcoholics. |journal=Translational research : the journal of laboratory and clinical medicine |volume=149 |issue= 6 |pages= 293-7 |year= 2007 |pmid= 17543846 |doi= 10.1016/j.trsl.2006.12.002 }}
*{{cite journal | author=Crabb DW, Edenberg HJ, Bosron WF, Li TK |title=Genotypes for aldehyde dehydrogenase deficiency and alcohol sensitivity. The inactive ALDH2(2) allele is dominant. |journal=J. Clin. Invest. |volume=83 |issue= 1 |pages= 314-6 |year= 1989 |pmid= 2562960 |doi= }}
*{{cite journal | author=Hsu LC, Bendel RE, Yoshida A |title=Genomic structure of the human mitochondrial aldehyde dehydrogenase gene. |journal=Genomics |volume=2 |issue= 1 |pages= 57-65 |year= 1988 |pmid= 2838413 |doi= }}
*{{cite journal | author=Hsu LC, Tani K, Fujiyoshi T, ''et al.'' |title=Cloning of cDNAs for human aldehyde dehydrogenases 1 and 2. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=82 |issue= 11 |pages= 3771-5 |year= 1985 |pmid= 2987944 |doi= }}
*{{cite journal | author=Braun T, Grzeschik KH, Bober E, ''et al.'' |title=The structural gene for the mitochondrial aldehyde dehydrogenase maps to human chromosome 12. |journal=Hum. Genet. |volume=73 |issue= 4 |pages= 365-7 |year= 1986 |pmid= 3017845 |doi= }}
*{{cite journal | author=Braun T, Bober E, Singh S, ''et al.'' |title=Isolation and sequence analysis of a full length cDNA clone coding for human mitochondrial aldehyde dehydrogenase. |journal=Nucleic Acids Res. |volume=15 |issue= 7 |pages= 3179 |year= 1987 |pmid= 3562250 |doi= }}
*{{cite journal | author=Braun T, Bober E, Singh S, ''et al.'' |title=Evidence for a signal peptide at the amino-terminal end of human mitochondrial aldehyde dehydrogenase. |journal=FEBS Lett. |volume=215 |issue= 2 |pages= 233-6 |year= 1987 |pmid= 3582651 |doi= }}
*{{cite journal | author=Agarwal DP, Goedde HW |title=Human aldehyde dehydrogenase isozymes and alcohol sensitivity. |journal=Isozymes Curr. Top. Biol. Med. Res. |volume=16 |issue= |pages= 21-48 |year= 1987 |pmid= 3610592 |doi= }}
*{{cite journal | author=Hempel J, Höög JO, Jörnvall H |title=Mitochondrial aldehyde dehydrogenase. Homology of putative targeting sequence to that of carbamyl phosphate synthetase I revealed by correlation of cDNA and protein data. |journal=FEBS Lett. |volume=222 |issue= 1 |pages= 95-8 |year= 1987 |pmid= 3653404 |doi= }}
*{{cite journal | author=Yoshida A, Ikawa M, Hsu LC, Tani K |title=Molecular abnormality and cDNA cloning of human aldehyde dehydrogenases. |journal=Alcohol |volume=2 |issue= 1 |pages= 103-6 |year= 1985 |pmid= 4015823 |doi= }}
*{{cite journal | author=Hempel J, Kaiser R, Jörnvall H |title=Mitochondrial aldehyde dehydrogenase from human liver. Primary structure, differences in relation to the cytosolic enzyme, and functional correlations. |journal=Eur. J. Biochem. |volume=153 |issue= 1 |pages= 13-28 |year= 1985 |pmid= 4065146 |doi= }}
*{{cite journal | author=Yoshida A, Huang IY, Ikawa M |title=Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=81 |issue= 1 |pages= 258-61 |year= 1984 |pmid= 6582480 |doi= }}
*{{cite journal | author=Xiao Q, Weiner H, Johnston T, Crabb DW |title=The aldehyde dehydrogenase ALDH2*2 allele exhibits dominance over ALDH2*1 in transduced HeLa cells. |journal=J. Clin. Invest. |volume=96 |issue= 5 |pages= 2180-6 |year= 1995 |pmid= 7593603 |doi= }}
*{{cite journal | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171-4 |year= 1994 |pmid= 8125298 |doi= }}
*{{cite journal | author=Novoradovsky A, Tsai SJ, Goldfarb L, ''et al.'' |title=Mitochondrial aldehyde dehydrogenase polymorphism in Asian and American Indian populations: detection of new ALDH2 alleles. |journal=Alcohol. Clin. Exp. Res. |volume=19 |issue= 5 |pages= 1105-10 |year= 1996 |pmid= 8561277 |doi= }}
*{{cite journal | author=Xiao Q, Weiner H, Crabb DW |title=The mutation in the mitochondrial aldehyde dehydrogenase (ALDH2) gene responsible for alcohol-induced flushing increases turnover of the enzyme tetramers in a dominant fashion. |journal=J. Clin. Invest. |volume=98 |issue= 9 |pages= 2027-32 |year= 1997 |pmid= 8903321 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on APAF1... {November 14, 2007 4:31:59 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 4:32:34 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_APAF1_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1c15.
| PDB = {{PDB2|1c15}}, {{PDB2|1cww}}, {{PDB2|1cy5}}, {{PDB2|1z6t}}, {{PDB2|2p1h}}, {{PDB2|2ygs}}, {{PDB2|3ygs}}
| Name = Apoptotic peptidase activating factor 1
| HGNCid = 576
| Symbol = APAF1
| AltSymbols =; CED4
| OMIM = 602233
| ECnumber =
| Homologene = 7626
| MGIid = 1306796
| GeneAtlas_image1 = PBB_GE_APAF1_204859_s_at_tn.png
| GeneAtlas_image2 = PBB_GE_APAF1_211553_x_at_tn.png
| GeneAtlas_image3 = PBB_GE_APAF1_211554_s_at_tn.png
| Function = {{GNF_GO|id=GO:0000166 |text = nucleotide binding}} {{GNF_GO|id=GO:0005524 |text = ATP binding}} {{GNF_GO|id=GO:0008656 |text = caspase activator activity}} {{GNF_GO|id=GO:0042802 |text = identical protein binding}}
| Component = {{GNF_GO|id=GO:0005622 |text = intracellular}} {{GNF_GO|id=GO:0005625 |text = soluble fraction}} {{GNF_GO|id=GO:0005634 |text = nucleus}} {{GNF_GO|id=GO:0005829 |text = cytosol}}
| Process = {{GNF_GO|id=GO:0001843 |text = neural tube closure}} {{GNF_GO|id=GO:0007275 |text = multicellular organismal development}} {{GNF_GO|id=GO:0007399 |text = nervous system development}} {{GNF_GO|id=GO:0008635 |text = caspase activation via cytochrome c}} {{GNF_GO|id=GO:0030900 |text = forebrain development}} {{GNF_GO|id=GO:0042981 |text = regulation of apoptosis}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 317
| Hs_Ensembl = ENSG00000120868
| Hs_RefseqProtein = NP_001151
| Hs_RefseqmRNA = NM_001160
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 12
| Hs_GenLoc_start = 97563209
| Hs_GenLoc_end = 97653335
| Hs_Uniprot = O14727
| Mm_EntrezGene = 11783
| Mm_Ensembl = ENSMUSG00000019979
| Mm_RefseqmRNA = NM_001042558
| Mm_RefseqProtein = NP_001036023
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 10
| Mm_GenLoc_start = 90419117
| Mm_GenLoc_end = 90512538
| Mm_Uniprot = Q4VZG8
}}
}}
'''Apoptotic peptidase activating factor 1''', also known as '''APAF1''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = This gene encodes a cytoplasmic protein that initiates apoptosis. This protein contains several copies of the WD-40 domain, a caspase recruitment domain (CARD), and an ATPase domain (NB-ARC). Upon binding cytochrome c and dATP, this protein forms an oligomeric apoptosome. The apoptosome binds and cleaves caspase 9 preproprotein, releasing its mature, activated form. Activated caspase 9 stimulates the subsequent caspase cascade that commits the cell to apoptosis. Alternative splicing results in several transcript variants encoding different isoforms.<ref>{{cite web | title = Entrez Gene: APAF1 apoptotic peptidase activating factor 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=317| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Smith TF, Gaitatzes C, Saxena K, Neer EJ |title=The WD repeat: a common architecture for diverse functions. |journal=Trends Biochem. Sci. |volume=24 |issue= 5 |pages= 181-5 |year= 1999 |pmid= 10322433 |doi= }}
*{{cite journal | author=van Oirschot JT |title=Diva vaccines that reduce virus transmission. |journal=J. Biotechnol. |volume=73 |issue= 2-3 |pages= 195-205 |year= 1999 |pmid= 10486928 |doi= }}
*{{cite journal | author=Nakajima D, Okazaki N, Yamakawa H, ''et al.'' |title=Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones. |journal=DNA Res. |volume=9 |issue= 3 |pages= 99-106 |year= 2003 |pmid= 12168954 |doi= }}
*{{cite journal | author=Campioni M, Santini D, Tonini G, ''et al.'' |title=Role of Apaf-1, a key regulator of apoptosis, in melanoma progression and chemoresistance. |journal=Exp. Dermatol. |volume=14 |issue= 11 |pages= 811-8 |year= 2006 |pmid= 16232302 |doi= 10.1111/j.1600-0625.2005.00360.x }}
*{{cite journal | author=Zou H, Henzel WJ, Liu X, ''et al.'' |title=Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. |journal=Cell |volume=90 |issue= 3 |pages= 405-13 |year= 1997 |pmid= 9267021 |doi= }}
*{{cite journal | author=Li P, Nijhawan D, Budihardjo I, ''et al.'' |title=Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. |journal=Cell |volume=91 |issue= 4 |pages= 479-89 |year= 1997 |pmid= 9390557 |doi= }}
*{{cite journal | author=Ishikawa K, Nagase T, Nakajima D, ''et al.'' |title=Prediction of the coding sequences of unidentified human genes. VIII. 78 new cDNA clones from brain which code for large proteins in vitro. |journal=DNA Res. |volume=4 |issue= 5 |pages= 307-13 |year= 1998 |pmid= 9455477 |doi= }}
*{{cite journal | author=Pan G, O'Rourke K, Dixit VM |title=Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. |journal=J. Biol. Chem. |volume=273 |issue= 10 |pages= 5841-5 |year= 1998 |pmid= 9488720 |doi= }}
*{{cite journal | author=Hu Y, Benedict MA, Wu D, ''et al.'' |title=Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=95 |issue= 8 |pages= 4386-91 |year= 1998 |pmid= 9539746 |doi= }}
*{{cite journal | author=Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES |title=Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. |journal=Mol. Cell |volume=1 |issue= 7 |pages= 949-57 |year= 1998 |pmid= 9651578 |doi= }}
*{{cite journal | author=Cecconi F, Alvarez-Bolado G, Meyer BI, ''et al.'' |title=Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. |journal=Cell |volume=94 |issue= 6 |pages= 727-37 |year= 1998 |pmid= 9753320 |doi= }}
*{{cite journal | author=Inohara N, Gourley TS, Carrio R, ''et al.'' |title=Diva, a Bcl-2 homologue that binds directly to Apaf-1 and induces BH3-independent cell death. |journal=J. Biol. Chem. |volume=273 |issue= 49 |pages= 32479-86 |year= 1999 |pmid= 9829980 |doi= }}
*{{cite journal | author=Hu Y, Ding L, Spencer DM, Núñez G |title=WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation. |journal=J. Biol. Chem. |volume=273 |issue= 50 |pages= 33489-94 |year= 1999 |pmid= 9837928 |doi= }}
*{{cite journal | author=Song Q, Kuang Y, Dixit VM, Vincenz C |title=Boo, a novel negative regulator of cell death, interacts with Apaf-1. |journal=EMBO J. |volume=18 |issue= 1 |pages= 167-78 |year= 1999 |pmid= 9878060 |doi= 10.1093/emboj/18.1.167 }}
*{{cite journal | author=Slee EA, Harte MT, Kluck RM, ''et al.'' |title=Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. |journal=J. Cell Biol. |volume=144 |issue= 2 |pages= 281-92 |year= 1999 |pmid= 9922454 |doi= }}
*{{cite journal | author=Zou H, Li Y, Liu X, Wang X |title=An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. |journal=J. Biol. Chem. |volume=274 |issue= 17 |pages= 11549-56 |year= 1999 |pmid= 10206961 |doi= }}
*{{cite journal | author=Saleh A, Srinivasula SM, Acharya S, ''et al.'' |title=Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. |journal=J. Biol. Chem. |volume=274 |issue= 25 |pages= 17941-5 |year= 1999 |pmid= 10364241 |doi= }}
*{{cite journal | author=Qin H, Srinivasula SM, Wu G, ''et al.'' |title=Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. |journal=Nature |volume=399 |issue= 6736 |pages= 549-57 |year= 1999 |pmid= 10376594 |doi= 10.1038/21124 }}
*{{cite journal | author=Drosopoulos NE, Walsh FS, Doherty P |title=A soluble version of the receptor-like protein tyrosine phosphatase kappa stimulates neurite outgrowth via a Grb2/MEK1-dependent signaling cascade. |journal=Mol. Cell. Neurosci. |volume=13 |issue= 6 |pages= 441-9 |year= 1999 |pmid= 10383829 |doi= 10.1006/mcne.1999.0758 }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on APOA5... {November 14, 2007 4:46:55 PM PST}
- SEARCH REDIRECT: Control Box Found: APOA5 {November 14, 2007 4:47:53 PM PST}
- UPDATE PROTEIN BOX: Updating Protein Box, No errors. {November 14, 2007 4:47:55 PM PST}
- UPDATE SUMMARY: Updating Summary, No Errors. {November 14, 2007 4:47:55 PM PST}
- UPDATE CITATIONS: Updating Citations, No Errors. {November 14, 2007 4:47:55 PM PST}
- UPDATED: Updated protein page: APOA5 {November 14, 2007 4:48:01 PM PST}
- INFO: Beginning work on ATF2... {November 14, 2007 4:37:03 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 4:37:46 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_ATF2_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1bhi.
| PDB = {{PDB2|1bhi}}, {{PDB2|1t2k}}
| Name = Activating transcription factor 2
| HGNCid = 784
| Symbol = ATF2
| AltSymbols =; CREB2; CRE-BP1; HB16; MGC111558; TREB7
| OMIM = 123811
| ECnumber =
| Homologene = 31061
| MGIid = 109349
| GeneAtlas_image1 = PBB_GE_ATF2_205446_s_at_tn.png
| GeneAtlas_image2 = PBB_GE_ATF2_212984_at_tn.png
| Function = {{GNF_GO|id=GO:0003700 |text = transcription factor activity}} {{GNF_GO|id=GO:0003702 |text = RNA polymerase II transcription factor activity}} {{GNF_GO|id=GO:0003713 |text = transcription coactivator activity}} {{GNF_GO|id=GO:0008270 |text = zinc ion binding}} {{GNF_GO|id=GO:0043565 |text = sequence-specific DNA binding}} {{GNF_GO|id=GO:0046872 |text = metal ion binding}} {{GNF_GO|id=GO:0046983 |text = protein dimerization activity}}
| Component = {{GNF_GO|id=GO:0005622 |text = intracellular}} {{GNF_GO|id=GO:0005634 |text = nucleus}}
| Process = {{GNF_GO|id=GO:0006350 |text = transcription}} {{GNF_GO|id=GO:0006355 |text = regulation of transcription, DNA-dependent}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 1386
| Hs_Ensembl = ENSG00000115966
| Hs_RefseqProtein = NP_001871
| Hs_RefseqmRNA = NM_001880
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 2
| Hs_GenLoc_start = 175645228
| Hs_GenLoc_end = 175741161
| Hs_Uniprot = P15336
| Mm_EntrezGene = 11909
| Mm_Ensembl = ENSMUSG00000027104
| Mm_RefseqmRNA = NM_001025093
| Mm_RefseqProtein = NP_001020264
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 2
| Mm_GenLoc_start = 73617360
| Mm_GenLoc_end = 73664083
| Mm_Uniprot = P70299
}}
}}
'''Activating transcription factor 2''', also known as '''ATF2''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = This gene encodes a transcription factor that is a member of the leucine zipper family of DNA binding proteins. This protein binds to the cAMP-responsive element (CRE), an octameric palindrome. The protein forms a homodimer or heterodimer with c-Jun and stimulates CRE-dependent transcription. The protein is also a histone acetyltransferase (HAT) that specifically acetylates histones H2B and H4 in vitro; thus it may represent a class of sequence-specific factors that activate transcription by direct effects on chromatin components. Additional transcript variants have been identified but their biological validity has not been determined.<ref>{{cite web | title = Entrez Gene: ATF2 activating transcription factor 2| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1386| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Denys H, Desmet R, Stragier M, ''et al.'' |title=Cystitis emphysematosa. |journal=Acta urologica Belgica |volume=45 |issue= 4 |pages= 327-31 |year= 1978 |pmid= 602896 |doi= }}
*{{cite journal | author=Kim SJ, Wagner S, Liu F, ''et al.'' |title=Retinoblastoma gene product activates expression of the human TGF-beta 2 gene through transcription factor ATF-2. |journal=Nature |volume=358 |issue= 6384 |pages= 331-4 |year= 1992 |pmid= 1641004 |doi= 10.1038/358331a0 }}
*{{cite journal | author=Hai T, Curran T |title=Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=88 |issue= 9 |pages= 3720-4 |year= 1991 |pmid= 1827203 |doi= }}
*{{cite journal | author=Hoeffler JP, Lustbader JW, Chen CY |title=Identification of multiple nuclear factors that interact with cyclic adenosine 3',5'-monophosphate response element-binding protein and activating transcription factor-2 by protein-protein interactions. |journal=Mol. Endocrinol. |volume=5 |issue= 2 |pages= 256-66 |year= 1991 |pmid= 1828107 |doi= }}
*{{cite journal | author=Ozawa K, Sudo T, Soeda E, ''et al.'' |title=Assignment of the human CREB2 (CRE-BP1) gene to 2q32. |journal=Genomics |volume=10 |issue= 4 |pages= 1103-4 |year= 1991 |pmid= 1833307 |doi= }}
*{{cite journal | author=Diep A, Li C, Klisak I, ''et al.'' |title=Assignment of the gene for cyclic AMP-response element binding protein 2 (CREB2) to human chromosome 2q24.1-q32. |journal=Genomics |volume=11 |issue= 4 |pages= 1161-3 |year= 1992 |pmid= 1838349 |doi= }}
*{{cite journal | author=Kara CJ, Liou HC, Ivashkiv LB, Glimcher LH |title=A cDNA for a human cyclic AMP response element-binding protein which is distinct from CREB and expressed preferentially in brain. |journal=Mol. Cell. Biol. |volume=10 |issue= 4 |pages= 1347-57 |year= 1990 |pmid= 2320002 |doi= }}
*{{cite journal | author=Gonzalez GA, Yamamoto KK, Fischer WH, ''et al.'' |title=A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. |journal=Nature |volume=337 |issue= 6209 |pages= 749-52 |year= 1989 |pmid= 2521922 |doi= 10.1038/337749a0 }}
*{{cite journal | author=Maekawa T, Sakura H, Kanei-Ishii C, ''et al.'' |title=Leucine zipper structure of the protein CRE-BP1 binding to the cyclic AMP response element in brain. |journal=EMBO J. |volume=8 |issue= 7 |pages= 2023-8 |year= 1989 |pmid= 2529117 |doi= }}
*{{cite journal | author=Raingeaud J, Gupta S, Rogers JS, ''et al.'' |title=Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. |journal=J. Biol. Chem. |volume=270 |issue= 13 |pages= 7420-6 |year= 1995 |pmid= 7535770 |doi= }}
*{{cite journal | author=Livingstone C, Patel G, Jones N |title=ATF-2 contains a phosphorylation-dependent transcriptional activation domain. |journal=EMBO J. |volume=14 |issue= 8 |pages= 1785-97 |year= 1995 |pmid= 7737129 |doi= }}
*{{cite journal | author=van Dam H, Wilhelm D, Herr I, ''et al.'' |title=ATF-2 is preferentially activated by stress-activated protein kinases to mediate c-jun induction in response to genotoxic agents. |journal=EMBO J. |volume=14 |issue= 8 |pages= 1798-811 |year= 1995 |pmid= 7737130 |doi= }}
*{{cite journal | author=Zhou Q, Gedrich RW, Engel DA |title=Transcriptional repression of the c-fos gene by YY1 is mediated by a direct interaction with ATF/CREB. |journal=J. Virol. |volume=69 |issue= 7 |pages= 4323-30 |year= 1995 |pmid= 7769693 |doi= }}
*{{cite journal | author=Newell CL, Deisseroth AB, Lopez-Berestein G |title=Interaction of nuclear proteins with an AP-1/CRE-like promoter sequence in the human TNF-alpha gene. |journal=J. Leukoc. Biol. |volume=56 |issue= 1 |pages= 27-35 |year= 1994 |pmid= 8027667 |doi= }}
*{{cite journal | author=Nomura N, Zu YL, Maekawa T, ''et al.'' |title=Isolation and characterization of a novel member of the gene family encoding the cAMP response element-binding protein CRE-BP1. |journal=J. Biol. Chem. |volume=268 |issue= 6 |pages= 4259-66 |year= 1993 |pmid= 8440710 |doi= }}
*{{cite journal | author=Martin ML, Lieberman PM, Curran T |title=Fos-Jun dimerization promotes interaction of the basic region with TFIIE-34 and TFIIF. |journal=Mol. Cell. Biol. |volume=16 |issue= 5 |pages= 2110-8 |year= 1996 |pmid= 8628277 |doi= }}
*{{cite journal | author=Yang L, Lanier ER, Kraig E |title=Identification of a novel, spliced variant of CREB that is preferentially expressed in the thymus. |journal=J. Immunol. |volume=158 |issue= 6 |pages= 2522-5 |year= 1997 |pmid= 9058782 |doi= }}
*{{cite journal | author=Shuman JD, Cheong J, Coligan JE |title=ATF-2 and C/EBPalpha can form a heterodimeric DNA binding complex in vitro. Functional implications for transcriptional regulation. |journal=J. Biol. Chem. |volume=272 |issue= 19 |pages= 12793-800 |year= 1997 |pmid= 9139739 |doi= }}
*{{cite journal | author=Fukunaga R, Hunter T |title=MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. |journal=EMBO J. |volume=16 |issue= 8 |pages= 1921-33 |year= 1997 |pmid= 9155018 |doi= 10.1093/emboj/16.8.1921 }}
*{{cite journal | author=Kumar S, McDonnell PC, Gum RJ, ''et al.'' |title=Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. |journal=Biochem. Biophys. Res. Commun. |volume=235 |issue= 3 |pages= 533-8 |year= 1997 |pmid= 9207191 |doi= 10.1006/bbrc.1997.6849 }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on AVP... {November 14, 2007 4:32:34 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 4:33:08 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_AVP_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1jk4.
| PDB = {{PDB2|1jk4}}, {{PDB2|1jk6}}, {{PDB2|1npo}}, {{PDB2|2bn2}}
| Name = Arginine vasopressin (neurophysin II, antidiuretic hormone, diabetes insipidus, neurohypophyseal)
| HGNCid = 894
| Symbol = AVP
| AltSymbols =; ADH; ARVP; AVP-NPII; AVRP; VP
| OMIM = 192340
| ECnumber =
| Homologene = 417
| MGIid = 88121
| GeneAtlas_image1 = PBB_GE_AVP_207848_at_tn.png
| Function = {{GNF_GO|id=GO:0005185 |text = neurohypophyseal hormone activity}}
| Component = {{GNF_GO|id=GO:0005576 |text = extracellular region}} {{GNF_GO|id=GO:0005625 |text = soluble fraction}}
| Process = {{GNF_GO|id=GO:0006091 |text = generation of precursor metabolites and energy}} {{GNF_GO|id=GO:0006833 |text = water transport}} {{GNF_GO|id=GO:0007165 |text = signal transduction}} {{GNF_GO|id=GO:0007267 |text = cell-cell signaling}} {{GNF_GO|id=GO:0030146 |text = diuresis}} {{GNF_GO|id=GO:0030819 |text = positive regulation of cAMP biosynthetic process}} {{GNF_GO|id=GO:0042310 |text = vasoconstriction}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 551
| Hs_Ensembl = ENSG00000101200
| Hs_RefseqProtein = NP_000481
| Hs_RefseqmRNA = NM_000490
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 20
| Hs_GenLoc_start = 3011203
| Hs_GenLoc_end = 3014058
| Hs_Uniprot = P01185
| Mm_EntrezGene = 11998
| Mm_Ensembl = ENSMUSG00000037727
| Mm_RefseqmRNA = NM_009732
| Mm_RefseqProtein = NP_033862
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 2
| Mm_GenLoc_start = 130272062
| Mm_GenLoc_end = 130273995
| Mm_Uniprot = Q3UUQ5
}}
}}
'''Arginine vasopressin (neurophysin II, antidiuretic hormone, diabetes insipidus, neurohypophyseal)''', also known as '''AVP''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = This gene encodes a precursor protein consisting of arginine vasopressin and two associated proteins, neurophysin II and a glycopeptide, copeptin. Arginine vasopressin is a posterior pituitary hormone which is synthesized in the supraoptic nucleus and paraventricular nucleus of the hypothalamus. Along with its carrier protein, neurophysin II, it is packaged into neurosecretory vesicles and transported axonally to the nerve endings in the neurohypophysis where it is either stored or secreted into the bloodstream. The precursor is thought to be activated while it is being transported along the axon to the posterior pituitary. Arginine vasopressin acts as a growth factor by enhancing pH regulation through acid-base transport systems. It has a direct antidiuretic action on the kidney, and also causes vasoconstriction of the peripheral vessels. This hormone can contract smooth muscle during parturition and lactation. It is also involved in cognition, tolerance, adaptation and complex sexual and maternal behaviour, as well as in the regulation of water excretion and cardiovascular functions. Mutations in this gene cause autosomal dominant neurohypophyseal diabetes insipidus (ADNDI).<ref>{{cite web | title = Entrez Gene: AVP arginine vasopressin (neurophysin II, antidiuretic hormone, diabetes insipidus, neurohypophyseal)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=551| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Riphagen CL, Pittman QJ |title=Arginine vasopressin as a central neurotransmitter. |journal=Fed. Proc. |volume=45 |issue= 9 |pages= 2318-22 |year= 1986 |pmid= 2874053 |doi= }}
*{{cite journal | author=Ishikawa SE |title=[Nephrogenic diabetes insipidus associated with mutations of vasopressin V2 receptors and aquaporin-2] |journal=Nippon Rinsho |volume=60 |issue= 2 |pages= 350-5 |year= 2002 |pmid= 11857925 |doi= }}
*{{cite journal | author=Bahnsen U, Oosting P, Swaab DF, ''et al.'' |title=A missense mutation in the vasopressin-neurophysin precursor gene cosegregates with human autosomal dominant neurohypophyseal diabetes insipidus. |journal=EMBO J. |volume=11 |issue= 1 |pages= 19-23 |year= 1992 |pmid= 1740104 |doi= }}
*{{cite journal | author=Ito M, Mori Y, Oiso Y, Saito H |title=A single base substitution in the coding region for neurophysin II associated with familial central diabetes insipidus. |journal=J. Clin. Invest. |volume=87 |issue= 2 |pages= 725-8 |year= 1991 |pmid= 1840604 |doi= }}
*{{cite journal | author=Repaske DR, Phillips JA, Kirby LT, ''et al.'' |title=Molecular analysis of autosomal dominant neurohypophyseal diabetes insipidus. |journal=J. Clin. Endocrinol. Metab. |volume=70 |issue= 3 |pages= 752-7 |year= 1990 |pmid= 1968469 |doi= }}
*{{cite journal | author=Summar ML, Phillips JA, Battey J, ''et al.'' |title=Linkage relationships of human arginine vasopressin-neurophysin-II and oxytocin-neurophysin-I to prodynorphin and other loci on chromosome 20. |journal=Mol. Endocrinol. |volume=4 |issue= 6 |pages= 947-50 |year= 1990 |pmid= 1978246 |doi= }}
*{{cite journal | author=Ganz MB, Boyarsky G, Sterzel RB, Boron WF |title=Arginine vasopressin enhances pHi regulation in the presence of HCO3- by stimulating three acid-base transport systems. |journal=Nature |volume=337 |issue= 6208 |pages= 648-51 |year= 1989 |pmid= 2521920 |doi= 10.1038/337648a0 }}
*{{cite journal | author=Sausville E, Carney D, Battey J |title=The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line. |journal=J. Biol. Chem. |volume=260 |issue= 18 |pages= 10236-41 |year= 1985 |pmid= 2991279 |doi= }}
*{{cite journal | author=Doherty-Fuller E, Copeland KC |title=Sweat tests in patients with diabetes insipidus. |journal=Clinical pediatrics |volume=27 |issue= 7 |pages= 330-2 |year= 1988 |pmid= 3390991 |doi= }}
*{{cite journal | author=Rehbein M, Hillers M, Mohr E, ''et al.'' |title=The neurohypophyseal hormones vasopressin and oxytocin. Precursor structure, synthesis and regulation. |journal=Biol. Chem. Hoppe-Seyler |volume=367 |issue= 8 |pages= 695-704 |year= 1986 |pmid= 3768139 |doi= }}
*{{cite journal | author=Mohr E, Hillers M, Ivell R, ''et al.'' |title=Expression of the vasopressin and oxytocin genes in human hypothalami. |journal=FEBS Lett. |volume=193 |issue= 1 |pages= 12-6 |year= 1986 |pmid= 4065330 |doi= }}
*{{cite journal | author=Brownstein MJ, Russell JT, Gainer H |title=Synthesis, transport, and release of posterior pituitary hormones. |journal=Science |volume=207 |issue= 4429 |pages= 373-8 |year= 1980 |pmid= 6153132 |doi= }}
*{{cite journal | author=Chauvet MT, Hurpet D, Chauvet J, Acher R |title=Identification of human neurophysins: complete amino acid sequences of MSEL- and VLDV-neurophysins. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=80 |issue= 10 |pages= 2839-43 |year= 1983 |pmid= 6574452 |doi= }}
*{{cite journal | author=Seidah NG, Benjannet S, Chrétien M |title=The complete sequence of a novel human pituitary glycopeptide homologous to pig posterior pituitary glycopeptide. |journal=Biochem. Biophys. Res. Commun. |volume=100 |issue= 2 |pages= 901-7 |year= 1981 |pmid= 7271787 |doi= }}
*{{cite journal | author=Nagasaki H, Ito M, Yuasa H, ''et al.'' |title=Two novel mutations in the coding region for neurophysin-II associated with familial central diabetes insipidus. |journal=J. Clin. Endocrinol. Metab. |volume=80 |issue= 4 |pages= 1352-6 |year= 1995 |pmid= 7714110 |doi= }}
*{{cite journal | author=Kjaer A, Knigge U, Warberg J |title=Histamine- and stress-induced prolactin secretion: importance of vasopressin V1- and V2-receptors. |journal=Eur. J. Endocrinol. |volume=131 |issue= 4 |pages= 391-7 |year= 1994 |pmid= 7921229 |doi= }}
*{{cite journal | author=Sugimoto T, Saito M, Mochizuki S, ''et al.'' |title=Molecular cloning and functional expression of a cDNA encoding the human V1b vasopressin receptor. |journal=J. Biol. Chem. |volume=269 |issue= 43 |pages= 27088-92 |year= 1994 |pmid= 7929452 |doi= }}
*{{cite journal | author=Repaske DR, Browning JE |title=A de novo mutation in the coding sequence for neurophysin-II (Pro24-->Leu) is associated with onset and transmission of autosomal dominant neurohypophyseal diabetes insipidus. |journal=J. Clin. Endocrinol. Metab. |volume=79 |issue= 2 |pages= 421-7 |year= 1994 |pmid= 8045958 |doi= }}
*{{cite journal | author=Yuasa H, Ito M, Nagasaki H, ''et al.'' |title=Glu-47, which forms a salt bridge between neurophysin-II and arginine vasopressin, is deleted in patients with familial central diabetes insipidus. |journal=J. Clin. Endocrinol. Metab. |volume=77 |issue= 3 |pages= 600-4 |year= 1993 |pmid= 8103767 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on CCND3... {November 14, 2007 4:33:50 PM PST}
- SEARCH REDIRECT: Control Box Found: CCND3 {November 14, 2007 4:34:19 PM PST}
- UPDATE PROTEIN BOX: Updating Protein Box, No errors. {November 14, 2007 4:34:21 PM PST}
- UPDATE SUMMARY: Updating Summary, No Errors. {November 14, 2007 4:34:21 PM PST}
- UPDATE CITATIONS: Updating Citations, No Errors. {November 14, 2007 4:34:21 PM PST}
- UPDATED: Updated protein page: CCND3 {November 14, 2007 4:34:28 PM PST}
- INFO: Beginning work on CCR3... {November 14, 2007 4:35:12 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 4:35:51 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = Chemokine (C-C motif) receptor 3
| HGNCid = 1604
| Symbol = CCR3
| AltSymbols =; CC-CKR-3; CD193; CKR3; CMKBR3; MGC102841
| OMIM = 601268
| ECnumber =
| Homologene = 20436
| MGIid = 104616
| GeneAtlas_image1 = PBB_GE_CCR3_208304_at_tn.png
| Function = {{GNF_GO|id=GO:0001584 |text = rhodopsin-like receptor activity}} {{GNF_GO|id=GO:0004872 |text = receptor activity}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0016493 |text = C-C chemokine receptor activity}}
| Component = {{GNF_GO|id=GO:0005886 |text = plasma membrane}} {{GNF_GO|id=GO:0005887 |text = integral to plasma membrane}} {{GNF_GO|id=GO:0016020 |text = membrane}} {{GNF_GO|id=GO:0016021 |text = integral to membrane}}
| Process = {{GNF_GO|id=GO:0006935 |text = chemotaxis}} {{GNF_GO|id=GO:0006954 |text = inflammatory response}} {{GNF_GO|id=GO:0006968 |text = cellular defense response}} {{GNF_GO|id=GO:0007155 |text = cell adhesion}} {{GNF_GO|id=GO:0007165 |text = signal transduction}} {{GNF_GO|id=GO:0007186 |text = G-protein coupled receptor protein signaling pathway}} {{GNF_GO|id=GO:0007188 |text = G-protein signaling, coupled to cAMP nucleotide second messenger}} {{GNF_GO|id=GO:0007204 |text = elevation of cytosolic calcium ion concentration}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 1232
| Hs_Ensembl = ENSG00000183625
| Hs_RefseqProtein = NP_001828
| Hs_RefseqmRNA = NM_001837
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 3
| Hs_GenLoc_start = 46227186
| Hs_GenLoc_end = 46283103
| Hs_Uniprot = P51677
| Mm_EntrezGene = 12771
| Mm_Ensembl = ENSMUSG00000035448
| Mm_RefseqmRNA = NM_009914
| Mm_RefseqProtein = NP_034044
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 9
| Mm_GenLoc_start = 123870898
| Mm_GenLoc_end = 123879738
| Mm_Uniprot = Q3U5L7
}}
}}
'''Chemokine (C-C motif) receptor 3''', also known as '''CCR3''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = The protein encoded by this gene is a receptor for C-C type chemokines. It belongs to family 1 of the G protein-coupled receptors. This receptor binds and responds to a variety of chemokines, including eotaxin (CCL11), eotaxin-3 (CCL26), MCP-3 (CCL7), MCP-4 (CCL13), and RANTES (CCL5). It is highly expressed in eosinophils and basophils, and is also detected in TH1 and TH2 cells, as well as in airway epithelial cells. This receptor may contribute to the accumulation and activation of eosinophils and other inflammatory cells in the allergic airway. It is also known to be an entry co-receptor for HIV-1. This gene and seven other chemokine receptor genes form a chemokine receptor gene cluster on the chromosomal region 3p21. Alternatively spliced transcript variants encoding the same protein have been described.<ref>{{cite web | title = Entrez Gene: CCR3 chemokine (C-C motif) receptor 3| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1232| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Choe H, Martin KA, Farzan M, ''et al.'' |title=Structural interactions between chemokine receptors, gp120 Env and CD4. |journal=Semin. Immunol. |volume=10 |issue= 3 |pages= 249-57 |year= 1998 |pmid= 9653051 |doi= }}
*{{cite journal | author=Marone G, Florio G, Petraroli A, de Paulis A |title=Dysregulation of the IgE/Fc epsilon RI network in HIV-1 infection. |journal=J. Allergy Clin. Immunol. |volume=107 |issue= 1 |pages= 22-30 |year= 2001 |pmid= 11149986 |doi= }}
*{{cite journal | author=Marone G, Florio G, Triggiani M, ''et al.'' |title=Mechanisms of IgE elevation in HIV-1 infection. |journal=Crit. Rev. Immunol. |volume=20 |issue= 6 |pages= 477-96 |year= 2001 |pmid= 11396683 |doi= }}
*{{cite journal | author=Ruibal-Ares BH, Belmonte L, Baré PC, ''et al.'' |title=HIV-1 infection and chemokine receptor modulation. |journal=Curr. HIV Res. |volume=2 |issue= 1 |pages= 39-50 |year= 2004 |pmid= 15053339 |doi= }}
*{{cite journal | author=Post TW, Bozic CR, Rothenberg ME, ''et al.'' |title=Molecular characterization of two murine eosinophil beta chemokine receptors. |journal=J. Immunol. |volume=155 |issue= 11 |pages= 5299-305 |year= 1995 |pmid= 7594543 |doi= }}
*{{cite journal | author=Combadiere C, Ahuja SK, Murphy PM |title=Cloning and functional expression of a human eosinophil CC chemokine receptor. |journal=J. Biol. Chem. |volume=270 |issue= 28 |pages= 16491-4 |year= 1995 |pmid= 7622448 |doi= }}
*{{cite journal | author=Ponath PD, Qin S, Ringler DJ, ''et al.'' |title=Cloning of the human eosinophil chemoattractant, eotaxin. Expression, receptor binding, and functional properties suggest a mechanism for the selective recruitment of eosinophils. |journal=J. Clin. Invest. |volume=97 |issue= 3 |pages= 604-12 |year= 1996 |pmid= 8609214 |doi= }}
*{{cite journal | author=Kitaura M, Nakajima T, Imai T, ''et al.'' |title=Molecular cloning of human eotaxin, an eosinophil-selective CC chemokine, and identification of a specific eosinophil eotaxin receptor, CC chemokine receptor 3. |journal=J. Biol. Chem. |volume=271 |issue= 13 |pages= 7725-30 |year= 1996 |pmid= 8631813 |doi= }}
*{{cite journal | author=Combadiere C, Ahuja SK, Murphy PM |title=Cloning and functional expression of a human eosinophil CC chemokine receptor. |journal=J. Biol. Chem. |volume=271 |issue= 18 |pages= 11034 |year= 1996 |pmid= 8631926 |doi= }}
*{{cite journal | author=Daugherty BL, Siciliano SJ, DeMartino JA, ''et al.'' |title=Cloning, expression, and characterization of the human eosinophil eotaxin receptor. |journal=J. Exp. Med. |volume=183 |issue= 5 |pages= 2349-54 |year= 1996 |pmid= 8642344 |doi= }}
*{{cite journal | author=Choe H, Farzan M, Sun Y, ''et al.'' |title=The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. |journal=Cell |volume=85 |issue= 7 |pages= 1135-48 |year= 1996 |pmid= 8674119 |doi= }}
*{{cite journal | author=Ponath PD, Qin S, Post TW, ''et al.'' |title=Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. |journal=J. Exp. Med. |volume=183 |issue= 6 |pages= 2437-48 |year= 1996 |pmid= 8676064 |doi= }}
*{{cite journal | author=Samson M, Soularue P, Vassart G, Parmentier M |title=The genes encoding the human CC-chemokine receptors CC-CKR1 to CC-CKR5 (CMKBR1-CMKBR5) are clustered in the p21.3-p24 region of chromosome 3. |journal=Genomics |volume=36 |issue= 3 |pages= 522-6 |year= 1997 |pmid= 8884276 |doi= 10.1006/geno.1996.0498 }}
*{{cite journal | author=Heath H, Qin S, Rao P, ''et al.'' |title=Chemokine receptor usage by human eosinophils. The importance of CCR3 demonstrated using an antagonistic monoclonal antibody. |journal=J. Clin. Invest. |volume=99 |issue= 2 |pages= 178-84 |year= 1997 |pmid= 9005985 |doi= }}
*{{cite journal | author=He J, Chen Y, Farzan M, ''et al.'' |title=CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. |journal=Nature |volume=385 |issue= 6617 |pages= 645-9 |year= 1997 |pmid= 9024664 |doi= 10.1038/385645a0 }}
*{{cite journal | author=Daugherty BL, Springer MS |title=The beta-chemokine receptor genes CCR1 (CMKBR1), CCR2 (CMKBR2), and CCR3 (CMKBR3) cluster within 285 kb on human chromosome 3p21. |journal=Genomics |volume=41 |issue= 2 |pages= 294-5 |year= 1997 |pmid= 9143512 |doi= 10.1006/geno.1997.4626 }}
*{{cite journal | author=Forssmann U, Uguccioni M, Loetscher P, ''et al.'' |title=Eotaxin-2, a novel CC chemokine that is selective for the chemokine receptor CCR3, and acts like eotaxin on human eosinophil and basophil leukocytes. |journal=J. Exp. Med. |volume=185 |issue= 12 |pages= 2171-6 |year= 1997 |pmid= 9182688 |doi= }}
*{{cite journal | author=Alkhatib G, Berger EA, Murphy PM, Pease JE |title=Determinants of HIV-1 coreceptor function on CC chemokine receptor 3. Importance of both extracellular and transmembrane/cytoplasmic regions. |journal=J. Biol. Chem. |volume=272 |issue= 33 |pages= 20420-6 |year= 1997 |pmid= 9252350 |doi= }}
*{{cite journal | author=Pakianathan DR, Kuta EG, Artis DR, ''et al.'' |title=Distinct but overlapping epitopes for the interaction of a CC-chemokine with CCR1, CCR3 and CCR5. |journal=Biochemistry |volume=36 |issue= 32 |pages= 9642-8 |year= 1997 |pmid= 9289016 |doi= 10.1021/bi970593z }}
*{{cite journal | author=Sallusto F, Mackay CR, Lanzavecchia A |title=Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. |journal=Science |volume=277 |issue= 5334 |pages= 2005-7 |year= 1997 |pmid= 9302298 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on CDK7... {November 14, 2007 4:34:28 PM PST}
- SEARCH REDIRECT: Control Box Found: CDK7 {November 14, 2007 4:35:04 PM PST}
- UPDATE PROTEIN BOX: Updating Protein Box, No errors. {November 14, 2007 4:35:05 PM PST}
- UPDATE SUMMARY: Updating Summary, No Errors. {November 14, 2007 4:35:05 PM PST}
- UPDATE CITATIONS: Updating Citations, No Errors. {November 14, 2007 4:35:05 PM PST}
- UPDATED: Updated protein page: CDK7 {November 14, 2007 4:35:12 PM PST}
- INFO: Beginning work on CEACAM1... {November 14, 2007 4:33:08 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 4:33:50 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_CEACAM1_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 2gk2.
| PDB = {{PDB2|2gk2}}
| Name = Carcinoembryonic antigen-related cell adhesion molecule 1 (biliary glycoprotein)
| HGNCid = 1814
| Symbol = CEACAM1
| AltSymbols =; BGP; BGP1; BGPI
| OMIM = 109770
| ECnumber =
| Homologene = 86044
| MGIid = 1347245
| GeneAtlas_image1 = PBB_GE_CEACAM1_206576_s_at_tn.png
| GeneAtlas_image2 = PBB_GE_CEACAM1_209498_at_tn.png
| GeneAtlas_image3 = PBB_GE_CEACAM1_211883_x_at_tn.png
| Function = {{GNF_GO|id=GO:0003674 |text = molecular_function}}
| Component = {{GNF_GO|id=GO:0005575 |text = cellular_component}} {{GNF_GO|id=GO:0005624 |text = membrane fraction}} {{GNF_GO|id=GO:0005887 |text = integral to plasma membrane}} {{GNF_GO|id=GO:0016020 |text = membrane}} {{GNF_GO|id=GO:0016021 |text = integral to membrane}}
| Process = {{GNF_GO|id=GO:0001525 |text = angiogenesis}} {{GNF_GO|id=GO:0007156 |text = homophilic cell adhesion}} {{GNF_GO|id=GO:0007229 |text = integrin-mediated signaling pathway}} {{GNF_GO|id=GO:0007565 |text = female pregnancy}} {{GNF_GO|id=GO:0008150 |text = biological_process}} {{GNF_GO|id=GO:0016477 |text = cell migration}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 634
| Hs_Ensembl = ENSG00000079385
| Hs_RefseqProtein = NP_001020083
| Hs_RefseqmRNA = NM_001024912
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 19
| Hs_GenLoc_start = 47703298
| Hs_GenLoc_end = 47724479
| Hs_Uniprot = P13688
| Mm_EntrezGene = 26365
| Mm_Ensembl = ENSMUSG00000074272
| Mm_RefseqmRNA = XM_989614
| Mm_RefseqProtein = XP_994708
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 7
| Mm_GenLoc_start = 24990200
| Mm_GenLoc_end = 25186385
| Mm_Uniprot = Q3LFS7
}}
}}
'''Carcinoembryonic antigen-related cell adhesion molecule 1 (biliary glycoprotein)''', also known as '''CEACAM1''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = This gene encodes a member of the carcinoembryonic antigen (CEA) gene family, which belongs to the immunoglobulin superfamily. Two subgroups of the CEA family, the CEA cell adhesion molecules and the pregnancy-specific glycoproteins, are located within a 1.2 Mb cluster on the long arm of chromosome 19. Eleven pseudogenes of the CEA cell adhesion molecule subgroup are also found in the cluster. The encoded protein was originally described in bile ducts of liver as biliary glycoprotein. Subsequently, it was found to be a cell-cell adhesion molecule detected on leukocytes, epithelia, and endothelia. The encoded protein mediates cell adhesion via homophilic as well as heterophilic binding to other proteins of the subgroup. Multiple cellular activities have been attributed to the encoded protein, including roles in the differentiation and arrangement of tissue three-dimensional structure, angiogenesis, apoptosis, tumor suppression, metastasis, and the modulation of innate and adaptive immune responses. Multiple transcript variants encoding different isoforms have been reported, but the full-length nature of only two has been determined.<ref>{{cite web | title = Entrez Gene: CEACAM1 carcinoembryonic antigen-related cell adhesion molecule 1 (biliary glycoprotein)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=634| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Gray-Owen SD, Blumberg RS |title=CEACAM1: contact-dependent control of immunity. |journal=Nat. Rev. Immunol. |volume=6 |issue= 6 |pages= 433-46 |year= 2006 |pmid= 16724098 |doi= 10.1038/nri1864 }}
*{{cite journal | author=Svenberg T, Hammarström S, Zeromski J |title=Immunofluorescence studies on the occurrence and localization of the CEA-related biliary glycoprotein I (BGP I) in normal human gastrointestinal tissues. |journal=Clin. Exp. Immunol. |volume=36 |issue= 3 |pages= 436-41 |year= 1979 |pmid= 385181 |doi= }}
*{{cite journal | author=Thompson J, Zimmermann W, Osthus-Bugat P, ''et al.'' |title=Long-range chromosomal mapping of the carcinoembryonic antigen (CEA) gene family cluster. |journal=Genomics |volume=12 |issue= 4 |pages= 761-72 |year= 1992 |pmid= 1572649 |doi= }}
*{{cite journal | author=Kuroki M, Arakawa F, Matsuo Y, ''et al.'' |title=Three novel molecular forms of biliary glycoprotein deduced from cDNA clones from a human leukocyte library. |journal=Biochem. Biophys. Res. Commun. |volume=176 |issue= 2 |pages= 578-85 |year= 1991 |pmid= 2025273 |doi= }}
*{{cite journal | author=Hinoda Y, Neumaier M, Hefta SA, ''et al.'' |title=Molecular cloning of a cDNA coding biliary glycoprotein I: primary structure of a glycoprotein immunologically crossreactive with carcinoembryonic antigen. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=85 |issue= 18 |pages= 6959-63 |year= 1988 |pmid= 2457922 |doi= }}
*{{cite journal | author=Barnett TR, Kretschmer A, Austen DA, ''et al.'' |title=Carcinoembryonic antigens: alternative splicing accounts for the multiple mRNAs that code for novel members of the carcinoembryonic antigen family. |journal=J. Cell Biol. |volume=108 |issue= 2 |pages= 267-76 |year= 1989 |pmid= 2537311 |doi= }}
*{{cite journal | author=Neumaier M, Paululat S, Chan A, ''et al.'' |title=Biliary glycoprotein, a potential human cell adhesion molecule, is down-regulated in colorectal carcinomas. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=90 |issue= 22 |pages= 10744-8 |year= 1993 |pmid= 7504281 |doi= }}
*{{cite journal | author=Formisano P, Najjar SM, Gross CN, ''et al.'' |title=Receptor-mediated internalization of insulin. Potential role of pp120/HA4, a substrate of the insulin receptor kinase. |journal=J. Biol. Chem. |volume=270 |issue= 41 |pages= 24073-7 |year= 1995 |pmid= 7592607 |doi= }}
*{{cite journal | author=Frängsmyr L, Baranov V, Prall F, ''et al.'' |title=Cell- and region-specific expression of biliary glycoprotein and its messenger RNA in normal human colonic mucosa. |journal=Cancer Res. |volume=55 |issue= 14 |pages= 2963-7 |year= 1995 |pmid= 7606710 |doi= }}
*{{cite journal | author=Najjar SM, Philippe N, Suzuki Y, ''et al.'' |title=Insulin-stimulated phosphorylation of recombinant pp120/HA4, an endogenous substrate of the insulin receptor tyrosine kinase. |journal=Biochemistry |volume=34 |issue= 29 |pages= 9341-9 |year= 1995 |pmid= 7626603 |doi= }}
*{{cite journal | author=Nédellec P, Turbide C, Beauchemin N |title=Characterization and transcriptional activity of the mouse biliary glycoprotein 1 gene, a carcinoembryonic antigen-related gene. |journal=Eur. J. Biochem. |volume=231 |issue= 1 |pages= 104-14 |year= 1995 |pmid= 7628460 |doi= }}
*{{cite journal | author=Watt SM, Fawcett J, Murdoch SJ, ''et al.'' |title=CD66 identifies the biliary glycoprotein (BGP) adhesion molecule: cloning, expression, and adhesion functions of the BGPc splice variant. |journal=Blood |volume=84 |issue= 1 |pages= 200-10 |year= 1994 |pmid= 8018919 |doi= }}
*{{cite journal | author=Hauck W, Nédellec P, Turbide C, ''et al.'' |title=Transcriptional control of the human biliary glycoprotein gene, a CEA gene family member down-regulated in colorectal carcinomas. |journal=Eur. J. Biochem. |volume=223 |issue= 2 |pages= 529-41 |year= 1994 |pmid= 8055923 |doi= }}
*{{cite journal | author=Barnett TR, Drake L, Pickle W |title=Human biliary glycoprotein gene: characterization of a family of novel alternatively spliced RNAs and their expressed proteins. |journal=Mol. Cell. Biol. |volume=13 |issue= 2 |pages= 1273-82 |year= 1993 |pmid= 8423792 |doi= }}
*{{cite journal | author=Kuroki M, Yamanaka T, Matsuo Y, ''et al.'' |title=Immunochemical analysis of carcinoembryonic antigen (CEA)-related antigens differentially localized in intracellular granules of human neutrophils. |journal=Immunol. Invest. |volume=24 |issue= 5 |pages= 829-43 |year= 1996 |pmid= 8543346 |doi= }}
*{{cite journal | author=Huber M, Izzi L, Grondin P, ''et al.'' |title=The carboxyl-terminal region of biliary glycoprotein controls its tyrosine phosphorylation and association with protein-tyrosine phosphatases SHP-1 and SHP-2 in epithelial cells. |journal=J. Biol. Chem. |volume=274 |issue= 1 |pages= 335-44 |year= 1999 |pmid= 9867848 |doi= }}
*{{cite journal | author=Feuk-Lagerstedt E, Jordan ET, Leffler H, ''et al.'' |title=Identification of CD66a and CD66b as the major galectin-3 receptor candidates in human neutrophils. |journal=J. Immunol. |volume=163 |issue= 10 |pages= 5592-8 |year= 1999 |pmid= 10553088 |doi= }}
*{{cite journal | author=Soni P, Lakkis M, Poy MN, ''et al.'' |title=The differential effects of pp120 (Ceacam 1) on the mitogenic action of insulin and insulin-like growth factor 1 are regulated by the nonconserved tyrosine 1316 in the insulin receptor. |journal=Mol. Cell. Biol. |volume=20 |issue= 11 |pages= 3896-905 |year= 2000 |pmid= 10805733 |doi= }}
*{{cite journal | author=Ergün S, Kilik N, Ziegeler G, ''et al.'' |title=CEA-related cell adhesion molecule 1: a potent angiogenic factor and a major effector of vascular endothelial growth factor. |journal=Mol. Cell |volume=5 |issue= 2 |pages= 311-20 |year= 2000 |pmid= 10882072 |doi= }}
*{{cite journal | author=Wang L, Lin SH, Wu WG, ''et al.'' |title=C-CAM1, a candidate tumor suppressor gene, is abnormally expressed in primary lung cancers. |journal=Clin. Cancer Res. |volume=6 |issue= 8 |pages= 2988-93 |year= 2000 |pmid= 10955775 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on CNR1... {November 14, 2007 4:35:51 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 4:36:34 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = Cannabinoid receptor 1 (brain)
| HGNCid = 2159
| Symbol = CNR1
| AltSymbols =; CANN6; CB-R; CB1; CB1A; CB1K5; CNR
| OMIM = 114610
| ECnumber =
| Homologene = 7273
| MGIid = 104615
| GeneAtlas_image1 = PBB_GE_CNR1_208243_s_at_tn.png
| GeneAtlas_image2 = PBB_GE_CNR1_213436_at_tn.png
| GeneAtlas_image3 = PBB_GE_CNR1_207940_x_at_tn.png
| Function = {{GNF_GO|id=GO:0004872 |text = receptor activity}} {{GNF_GO|id=GO:0004949 |text = cannabinoid receptor activity}}
| Component = {{GNF_GO|id=GO:0005886 |text = plasma membrane}} {{GNF_GO|id=GO:0005887 |text = integral to plasma membrane}}
| Process = {{GNF_GO|id=GO:0007165 |text = signal transduction}} {{GNF_GO|id=GO:0007187 |text = G-protein signaling, coupled to cyclic nucleotide second messenger}} {{GNF_GO|id=GO:0007610 |text = behavior}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 1268
| Hs_Ensembl = ENSG00000118432
| Hs_RefseqProtein = NP_057167
| Hs_RefseqmRNA = NM_016083
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 6
| Hs_GenLoc_start = 88906302
| Hs_GenLoc_end = 88932385
| Hs_Uniprot = P21554
| Mm_EntrezGene = 12801
| Mm_Ensembl = ENSMUSG00000044288
| Mm_RefseqmRNA = NM_007726
| Mm_RefseqProtein = NP_031752
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 4
| Mm_GenLoc_start = 34253206
| Mm_GenLoc_end = 34277444
| Mm_Uniprot = Q99NU3
}}
}}
'''Cannabinoid receptor 1 (brain)''', also known as '''CNR1''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = This gene encodes a protein that is one of two cannabinoid receptors. The cannabinoids, principally delta-9-tetrahydrocannabinol and synthetic analogs, are psychoactive ingredients of marijuana. The cannabinoid receptors are members of the family of guanine-nucleotide-binding protein (G-protein) coupled receptors which inhibit adenylate cyclase activity in a dose-dependent, stereoselective and pertussis toxin-sensitive manner. The two receptors have been found to be involved in the cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users of marijuana. Two transcript variants encoding different isoforms have been described for this gene.<ref>{{cite web | title = Entrez Gene: CNR1 cannabinoid receptor 1 (brain)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1268| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Oddi S, Spagnuolo P, Bari M, ''et al.'' |title=Differential modulation of type 1 and type 2 cannabinoid receptors along the neuroimmune axis. |journal=Int. Rev. Neurobiol. |volume=82 |issue= |pages= 327-37 |year= 2007 |pmid= 17678969 |doi= 10.1016/S0074-7742(07)82017-4 }}
*{{cite journal | author=Gérard CM, Mollereau C, Vassart G, Parmentier M |title=Molecular cloning of a human cannabinoid receptor which is also expressed in testis. |journal=Biochem. J. |volume=279 ( Pt 1) |issue= |pages= 129-34 |year= 1991 |pmid= 1718258 |doi= }}
*{{cite journal | author=Hoehe MR, Caenazzo L, Martinez MM, ''et al.'' |title=Genetic and physical mapping of the human cannabinoid receptor gene to chromosome 6q14-q15. |journal=New Biol. |volume=3 |issue= 9 |pages= 880-5 |year= 1991 |pmid= 1931832 |doi= }}
*{{cite journal | author=Matsuda LA, Lolait SJ, Brownstein MJ, ''et al.'' |title=Structure of a cannabinoid receptor and functional expression of the cloned cDNA. |journal=Nature |volume=346 |issue= 6284 |pages= 561-4 |year= 1990 |pmid= 2165569 |doi= 10.1038/346561a0 }}
*{{cite journal | author=Gérard C, Mollereau C, Vassart G, Parmentier M |title=Nucleotide sequence of a human cannabinoid receptor cDNA. |journal=Nucleic Acids Res. |volume=18 |issue= 23 |pages= 7142 |year= 1991 |pmid= 2263478 |doi= }}
*{{cite journal | author=Shire D, Carillon C, Kaghad M, ''et al.'' |title=An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing. |journal=J. Biol. Chem. |volume=270 |issue= 8 |pages= 3726-31 |year= 1995 |pmid= 7876112 |doi= }}
*{{cite journal | author=Bonaldo MF, Lennon G, Soares MB |title=Normalization and subtraction: two approaches to facilitate gene discovery. |journal=Genome Res. |volume=6 |issue= 9 |pages= 791-806 |year= 1997 |pmid= 8889548 |doi= }}
*{{cite journal | author=Kenney SP, Kekuda R, Prasad PD, ''et al.'' |title=Cannabinoid receptors and their role in the regulation of the serotonin transporter in human placenta. |journal=Am. J. Obstet. Gynecol. |volume=181 |issue= 2 |pages= 491-7 |year= 1999 |pmid= 10454705 |doi= }}
*{{cite journal | author=Porcella A, Maxia C, Gessa GL, Pani L |title=The human eye expresses high levels of CB1 cannabinoid receptor mRNA and protein. |journal=Eur. J. Neurosci. |volume=12 |issue= 3 |pages= 1123-7 |year= 2000 |pmid= 10762343 |doi= }}
*{{cite journal | author=Mukhopadhyay S, Howlett AC |title=CB1 receptor-G protein association. Subtype selectivity is determined by distinct intracellular domains. |journal=Eur. J. Biochem. |volume=268 |issue= 3 |pages= 499-505 |year= 2001 |pmid= 11168387 |doi= }}
*{{cite journal | author=Murphy WJ, Eizirik E, Johnson WE, ''et al.'' |title=Molecular phylogenetics and the origins of placental mammals. |journal=Nature |volume=409 |issue= 6820 |pages= 614-8 |year= 2001 |pmid= 11214319 |doi= 10.1038/35054550 }}
*{{cite journal | author=Nong L, Newton C, Friedman H, Klein TW |title=CB1 and CB2 receptor mRNA expression in human peripheral blood mononuclear cells (PBMC) from various donor types. |journal=Adv. Exp. Med. Biol. |volume=493 |issue= |pages= 229-33 |year= 2002 |pmid= 11727770 |doi= }}
*{{cite journal | author=Leroy S, Griffon N, Bourdel MC, ''et al.'' |title=Schizophrenia and the cannabinoid receptor type 1 (CB1): association study using a single-base polymorphism in coding exon 1. |journal=Am. J. Med. Genet. |volume=105 |issue= 8 |pages= 749-52 |year= 2002 |pmid= 11803524 |doi= }}
*{{cite journal | author=Schmidt LG, Samochowiec J, Finckh U, ''et al.'' |title=Association of a CB1 cannabinoid receptor gene (CNR1) polymorphism with severe alcohol dependence. |journal=Drug and alcohol dependence |volume=65 |issue= 3 |pages= 221-4 |year= 2002 |pmid= 11841893 |doi= }}
*{{cite journal | author=Lastres-Becker I, Cebeira M, de Ceballos ML, ''et al.'' |title=Increased cannabinoid CB1 receptor binding and activation of GTP-binding proteins in the basal ganglia of patients with Parkinson's syndrome and of MPTP-treated marmosets. |journal=Eur. J. Neurosci. |volume=14 |issue= 11 |pages= 1827-32 |year= 2002 |pmid= 11860478 |doi= }}
*{{cite journal | author=Petrelli A, Gilestro GF, Lanzardo S, ''et al.'' |title=The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. |journal=Nature |volume=416 |issue= 6877 |pages= 187-90 |year= 2002 |pmid= 11894096 |doi= 10.1038/416187a }}
*{{cite journal | author=Huang SM, Bisogno T, Trevisani M, ''et al.'' |title=An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 12 |pages= 8400-5 |year= 2002 |pmid= 12060783 |doi= 10.1073/pnas.122196999 }}
*{{cite journal | author=Ujike H, Takaki M, Nakata K, ''et al.'' |title=CNR1, central cannabinoid receptor gene, associated with susceptibility to hebephrenic schizophrenia. |journal=Mol. Psychiatry |volume=7 |issue= 5 |pages= 515-8 |year= 2002 |pmid= 12082570 |doi= 10.1038/sj.mp.4001029 }}
*{{cite journal | author=Ho BY, Current L, Drewett JG |title=Role of intracellular loops of cannabinoid CB(1) receptor in functional interaction with G(alpha16). |journal=FEBS Lett. |volume=522 |issue= 1-3 |pages= 130-4 |year= 2002 |pmid= 12095632 |doi= }}
*{{cite journal | author=Matias I, Pochard P, Orlando P, ''et al.'' |title=Presence and regulation of the endocannabinoid system in human dendritic cells. |journal=Eur. J. Biochem. |volume=269 |issue= 15 |pages= 3771-8 |year= 2002 |pmid= 12153574 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on CP... {November 14, 2007 4:36:34 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 4:37:03 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_CP_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1kcw.
| PDB = {{PDB2|1kcw}}, {{PDB2|2j5w}}
| Name = Ceruloplasmin (ferroxidase)
| HGNCid = 2295
| Symbol = CP
| AltSymbols =; CP-2
| OMIM = 117700
| ECnumber =
| Homologene = 75
| MGIid = 88476
| GeneAtlas_image1 = PBB_GE_CP_204846_at_tn.png
| Function = {{GNF_GO|id=GO:0004322 |text = ferroxidase activity}} {{GNF_GO|id=GO:0005375 |text = copper ion transmembrane transporter activity}} {{GNF_GO|id=GO:0005507 |text = copper ion binding}} {{GNF_GO|id=GO:0016491 |text = oxidoreductase activity}} {{GNF_GO|id=GO:0046872 |text = metal ion binding}}
| Component = {{GNF_GO|id=GO:0005576 |text = extracellular region}} {{GNF_GO|id=GO:0005615 |text = extracellular space}}
| Process = {{GNF_GO|id=GO:0006811 |text = ion transport}} {{GNF_GO|id=GO:0006825 |text = copper ion transport}} {{GNF_GO|id=GO:0006878 |text = cellular copper ion homeostasis}} {{GNF_GO|id=GO:0006879 |text = cellular iron ion homeostasis}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 1356
| Hs_Ensembl = ENSG00000047457
| Hs_RefseqProtein = NP_000087
| Hs_RefseqmRNA = NM_000096
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 3
| Hs_GenLoc_start = 150374067
| Hs_GenLoc_end = 150422269
| Hs_Uniprot = P00450
| Mm_EntrezGene = 12870
| Mm_Ensembl = ENSMUSG00000003617
| Mm_RefseqmRNA = NM_001042611
| Mm_RefseqProtein = NP_001036076
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 3
| Mm_GenLoc_start = 20149205
| Mm_GenLoc_end = 20200943
| Mm_Uniprot = Q2F3J4
}}
}}
'''Ceruloplasmin (ferroxidase)''', also known as '''CP''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = This gene encodes a metalloprotein that binds most of the copper in plasma and is involved in the peroxidation of Fe(II)transferrin. The deficiency of this metalloprotein, termed aceruloplasminemia, leads to iron accumulation and tissue damage, and is associated diabetes and neurologic diseases.<ref>{{cite web | title = Entrez Gene: CP ceruloplasmin (ferroxidase)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1356| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Gitlin JD |title=Aceruloplasminemia. |journal=Pediatr. Res. |volume=44 |issue= 3 |pages= 271-6 |year= 1998 |pmid= 9727700 |doi= }}
*{{cite journal | author=Hellman NE, Gitlin JD |title=Ceruloplasmin metabolism and function. |journal=Annu. Rev. Nutr. |volume=22 |issue= |pages= 439-58 |year= 2002 |pmid= 12055353 |doi= 10.1146/annurev.nutr.22.012502.114457 }}
*{{cite journal | author=Mazumder B, Seshadri V, Fox PL |title=Translational control by the 3'-UTR: the ends specify the means. |journal=Trends Biochem. Sci. |volume=28 |issue= 2 |pages= 91-8 |year= 2003 |pmid= 12575997 |doi= }}
*{{cite journal | author=Giurgea N, Constantinescu MI, Stanciu R, ''et al.'' |title=Ceruloplasmin - acute-phase reactant or endogenous antioxidant? The case of cardiovascular disease. |journal=Med. Sci. Monit. |volume=11 |issue= 2 |pages= RA48-51 |year= 2005 |pmid= 15668644 |doi= }}
*{{cite journal | author=Kingston IB, Kingston BL, Putnam FW |title=Chemical evidence that proteolytic cleavage causes the heterogeneity present in human ceruloplasmin preparations. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=74 |issue= 12 |pages= 5377-81 |year= 1978 |pmid= 146197 |doi= }}
*{{cite journal | author=Polosatov MV, Klimov PK, Masevich CG, ''et al.'' |title=Interaction of synthetic human big gastrin with blood proteins of man and animals. |journal=Acta hepato-gastroenterologica |volume=26 |issue= 2 |pages= 154-9 |year= 1979 |pmid= 463490 |doi= }}
*{{cite journal | author=Schilsky ML, Stockert RJ, Pollard JW |title=Caeruloplasmin biosynthesis by the human uterus. |journal=Biochem. J. |volume=288 ( Pt 2) |issue= |pages= 657-61 |year= 1993 |pmid= 1463466 |doi= }}
*{{cite journal | author=Walker FJ, Fay PJ |title=Characterization of an interaction between protein C and ceruloplasmin. |journal=J. Biol. Chem. |volume=265 |issue= 4 |pages= 1834-6 |year= 1990 |pmid= 2105310 |doi= }}
*{{cite journal | author=Fleming RE, Gitlin JD |title=Primary structure of rat ceruloplasmin and analysis of tissue-specific gene expression during development. |journal=J. Biol. Chem. |volume=265 |issue= 13 |pages= 7701-7 |year= 1990 |pmid= 2332446 |doi= }}
*{{cite journal | author=Yang FM, Friedrichs WE, Cupples RL, ''et al.'' |title=Human ceruloplasmin. Tissue-specific expression of transcripts produced by alternative splicing. |journal=J. Biol. Chem. |volume=265 |issue= 18 |pages= 10780-5 |year= 1990 |pmid= 2355023 |doi= }}
*{{cite journal | author=Koschinsky ML, Funk WD, van Oost BA, MacGillivray RT |title=Complete cDNA sequence of human preceruloplasmin. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=83 |issue= 14 |pages= 5086-90 |year= 1986 |pmid= 2873574 |doi= }}
*{{cite journal | author=Royle NJ, Irwin DM, Koschinsky ML, ''et al.'' |title=Human genes encoding prothrombin and ceruloplasmin map to 11p11-q12 and 3q21-24, respectively. |journal=Somat. Cell Mol. Genet. |volume=13 |issue= 3 |pages= 285-92 |year= 1987 |pmid= 3474786 |doi= }}
*{{cite journal | author=Yang F, Naylor SL, Lum JB, ''et al.'' |title=Characterization, mapping, and expression of the human ceruloplasmin gene. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=83 |issue= 10 |pages= 3257-61 |year= 1986 |pmid= 3486416 |doi= }}
*{{cite journal | author=Mercer JF, Grimes A |title=Isolation of a human ceruloplasmin cDNA clone that includes the N-terminal leader sequence. |journal=FEBS Lett. |volume=203 |issue= 2 |pages= 185-90 |year= 1986 |pmid= 3755405 |doi= }}
*{{cite journal | author=Rask L, Valtersson C, Anundi H, ''et al.'' |title=Subcellular localization in normal and vitamin A-deficient rat liver of vitamin A serum transport proteins, albumin, ceruloplasmin and class I major histocompatibility antigens. |journal=Exp. Cell Res. |volume=143 |issue= 1 |pages= 91-102 |year= 1983 |pmid= 6337857 |doi= }}
*{{cite journal | author=Kressner MS, Stockert RJ, Morell AG, Sternlieb I |title=Origins of biliary copper. |journal=Hepatology |volume=4 |issue= 5 |pages= 867-70 |year= 1984 |pmid= 6479854 |doi= }}
*{{cite journal | author=Takahashi N, Bauman RA, Ortel TL, ''et al.'' |title=Internal triplication in the structure of human ceruloplasmin. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=80 |issue= 1 |pages= 115-9 |year= 1983 |pmid= 6571985 |doi= }}
*{{cite journal | author=Takahashi N, Ortel TL, Putnam FW |title=Single-chain structure of human ceruloplasmin: the complete amino acid sequence of the whole molecule. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=81 |issue= 2 |pages= 390-4 |year= 1984 |pmid= 6582496 |doi= }}
*{{cite journal | author=Dwulet FE, Putnam FW |title=Complete amino acid sequence of a 50,000-dalton fragment of human ceruloplasmin. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=78 |issue= 2 |pages= 790-4 |year= 1981 |pmid= 6940148 |doi= }}
*{{cite journal | author=Kingston IB, Kingston BL, Putnam FW |title=Primary structure of a histidine-rich proteolytic fragment of human ceruloplasmin. I. Amino acid sequence of the cyanogen bromide peptides. |journal=J. Biol. Chem. |volume=255 |issue= 7 |pages= 2878-85 |year= 1980 |pmid= 6987229 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on CTNND1... {November 14, 2007 4:37:46 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 4:38:26 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = Catenin (cadherin-associated protein), delta 1
| HGNCid = 2515
| Symbol = CTNND1
| AltSymbols =; CAS; CTNND; KIAA0384; P120CAS; P120CTN; p120
| OMIM = 601045
| ECnumber =
| Homologene = 1017
| MGIid = 105100
| Function = {{GNF_GO|id=GO:0005198 |text = structural molecule activity}} {{GNF_GO|id=GO:0005488 |text = binding}} {{GNF_GO|id=GO:0005515 |text = protein binding}}
| Component = {{GNF_GO|id=GO:0005624 |text = membrane fraction}} {{GNF_GO|id=GO:0005634 |text = nucleus}} {{GNF_GO|id=GO:0005737 |text = cytoplasm}} {{GNF_GO|id=GO:0005856 |text = cytoskeleton}} {{GNF_GO|id=GO:0030027 |text = lamellipodium}}
| Process = {{GNF_GO|id=GO:0006350 |text = transcription}} {{GNF_GO|id=GO:0006355 |text = regulation of transcription, DNA-dependent}} {{GNF_GO|id=GO:0016055 |text = Wnt receptor signaling pathway}} {{GNF_GO|id=GO:0016337 |text = cell-cell adhesion}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 1500
| Hs_Ensembl =
| Hs_RefseqProtein = XP_001126721
| Hs_RefseqmRNA = XM_001126721
| Hs_GenLoc_db =
| Hs_GenLoc_chr =
| Hs_GenLoc_start =
| Hs_GenLoc_end =
| Hs_Uniprot =
| Mm_EntrezGene = 12388
| Mm_Ensembl = ENSMUSG00000034101
| Mm_RefseqmRNA = NM_007615
| Mm_RefseqProtein = NP_031641
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 2
| Mm_GenLoc_start = 84401622
| Mm_GenLoc_end = 84451514
| Mm_Uniprot = Q3TSU9
}}
}}
'''Catenin (cadherin-associated protein), delta 1''', also known as '''CTNND1''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = This gene encodes a member of the Armadillo protein family, which function in adhesion between cells and signal transduction. Multiple translation initiation codons and althernative splicing result in many different isoforms being translated. Not all of the full-length natures of the described transcript variants have been determined.<ref>{{cite web | title = Entrez Gene: CTNND1 catenin (cadherin-associated protein), delta 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1500| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Wijnhoven BP, Dinjens WN, Pignatelli M |title=E-cadherin-catenin cell-cell adhesion complex and human cancer. |journal=The British journal of surgery |volume=87 |issue= 8 |pages= 992-1005 |year= 2000 |pmid= 10931041 |doi= 10.1046/j.1365-2168.2000.01513.x }}
*{{cite journal | author=Thoreson MA, Reynolds AB |title=Altered expression of the catenin p120 in human cancer: implications for tumor progression. |journal=Differentiation |volume=70 |issue= 9-10 |pages= 583-9 |year= 2003 |pmid= 12492499 |doi= }}
*{{cite journal | author=Reynolds AB, Carnahan RH |title=Regulation of cadherin stability and turnover by p120ctn: implications in disease and cancer. |journal=Semin. Cell Dev. Biol. |volume=15 |issue= 6 |pages= 657-63 |year= 2005 |pmid= 15561585 |doi= 10.1016/j.semcdb.2004.09.003 }}
*{{cite journal | author=Keil R, Wolf A, Hüttelmaier S, Hatzfeld M |title=Beyond regulation of cell adhesion: local control of RhoA at the cleavage furrow by the p0071 catenin. |journal=Cell Cycle |volume=6 |issue= 2 |pages= 122-7 |year= 2007 |pmid= 17264675 |doi= }}
*{{cite journal | author=Kinch MS, Clark GJ, Der CJ, Burridge K |title=Tyrosine phosphorylation regulates the adhesions of ras-transformed breast epithelia. |journal=J. Cell Biol. |volume=130 |issue= 2 |pages= 461-71 |year= 1995 |pmid= 7542250 |doi= }}
*{{cite journal | author=Daniel JM, Reynolds AB |title=The tyrosine kinase substrate p120cas binds directly to E-cadherin but not to the adenomatous polyposis coli protein or alpha-catenin. |journal=Mol. Cell. Biol. |volume=15 |issue= 9 |pages= 4819-24 |year= 1995 |pmid= 7651399 |doi= }}
*{{cite journal | author=Shibamoto S, Hayakawa M, Takeuchi K, ''et al.'' |title=Association of p120, a tyrosine kinase substrate, with E-cadherin/catenin complexes. |journal=J. Cell Biol. |volume=128 |issue= 5 |pages= 949-57 |year= 1995 |pmid= 7876318 |doi= }}
*{{cite journal | author=Reynolds AB, Daniel JM, Mo YY, ''et al.'' |title=The novel catenin p120cas binds classical cadherins and induces an unusual morphological phenotype in NIH3T3 fibroblasts. |journal=Exp. Cell Res. |volume=225 |issue= 2 |pages= 328-37 |year= 1996 |pmid= 8660921 |doi= 10.1006/excr.1996.0183 }}
*{{cite journal | author=Reynolds AB, Jenkins NA, Gilbert DJ, ''et al.'' |title=The gene encoding p120cas, a novel catenin, localizes on human chromosome 11q11 (CTNND) and mouse chromosome 2 (Catns). |journal=Genomics |volume=31 |issue= 1 |pages= 127-9 |year= 1996 |pmid= 8808291 |doi= 10.1006/geno.1996.0020 }}
*{{cite journal | author=Nagase T, Ishikawa K, Nakajima D, ''et al.'' |title=Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. |journal=DNA Res. |volume=4 |issue= 2 |pages= 141-50 |year= 1997 |pmid= 9205841 |doi= }}
*{{cite journal | author=Lampugnani MG, Corada M, Andriopoulou P, ''et al.'' |title=Cell confluence regulates tyrosine phosphorylation of adherens junction components in endothelial cells. |journal=J. Cell. Sci. |volume=110 ( Pt 17) |issue= |pages= 2065-77 |year= 1997 |pmid= 9378757 |doi= }}
*{{cite journal | author=Hazan RB, Norton L |title=The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton. |journal=J. Biol. Chem. |volume=273 |issue= 15 |pages= 9078-84 |year= 1998 |pmid= 9535896 |doi= }}
*{{cite journal | author=Keirsebilck A, Bonné S, Staes K, ''et al.'' |title=Molecular cloning of the human p120ctn catenin gene (CTNND1): expression of multiple alternatively spliced isoforms. |journal=Genomics |volume=50 |issue= 2 |pages= 129-46 |year= 1998 |pmid= 9653641 |doi= 10.1006/geno.1998.5325 }}
*{{cite journal | author=Bauer A, Lickert H, Kemler R, Stappert J |title=Modification of the E-cadherin-catenin complex in mitotic Madin-Darby canine kidney epithelial cells. |journal=J. Biol. Chem. |volume=273 |issue= 43 |pages= 28314-21 |year= 1998 |pmid= 9774455 |doi= }}
*{{cite journal | author=Daniel JM, Reynolds AB |title=The catenin p120(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. |journal=Mol. Cell. Biol. |volume=19 |issue= 5 |pages= 3614-23 |year= 1999 |pmid= 10207085 |doi= }}
*{{cite journal | author=Aono S, Nakagawa S, Reynolds AB, Takeichi M |title=p120(ctn) acts as an inhibitory regulator of cadherin function in colon carcinoma cells. |journal=J. Cell Biol. |volume=145 |issue= 3 |pages= 551-62 |year= 1999 |pmid= 10225956 |doi= }}
*{{cite journal | author=Aho S, Rothenberger K, Uitto J |title=Human p120ctn catenin: tissue-specific expression of isoforms and molecular interactions with BP180/type XVII collagen. |journal=J. Cell. Biochem. |volume=73 |issue= 3 |pages= 390-9 |year= 1999 |pmid= 10321838 |doi= }}
*{{cite journal | author=van Hengel J, Vanhoenacker P, Staes K, van Roy F |title=Nuclear localization of the p120(ctn) Armadillo-like catenin is counteracted by a nuclear export signal and by E-cadherin expression. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=96 |issue= 14 |pages= 7980-5 |year= 1999 |pmid= 10393933 |doi= }}
*{{cite journal | author=Ohkubo T, Ozawa M |title=p120(ctn) binds to the membrane-proximal region of the E-cadherin cytoplasmic domain and is involved in modulation of adhesion activity. |journal=J. Biol. Chem. |volume=274 |issue= 30 |pages= 21409-15 |year= 1999 |pmid= 10409703 |doi= }}
*{{cite journal | author=Thoreson MA, Anastasiadis PZ, Daniel JM, ''et al.'' |title=Selective uncoupling of p120(ctn) from E-cadherin disrupts strong adhesion. |journal=J. Cell Biol. |volume=148 |issue= 1 |pages= 189-202 |year= 2000 |pmid= 10629228 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on CX3CL1... {November 14, 2007 4:44:51 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 4:45:37 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_CX3CL1_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1b2t.
| PDB = {{PDB2|1b2t}}, {{PDB2|1f2l}}
| Name = Chemokine (C-X3-C motif) ligand 1
| HGNCid = 10647
| Symbol = CX3CL1
| AltSymbols =; NTN; ABCD-3; C3Xkine; CXC3; CXC3C; NTT; SCYD1; fractalkine; neurotactin
| OMIM = 601880
| ECnumber =
| Homologene = 2251
| MGIid = 1097153
| GeneAtlas_image1 = PBB_GE_CX3CL1_823_at_tn.png
| GeneAtlas_image2 = PBB_GE_CX3CL1_203687_at_tn.png
| Function = {{GNF_GO|id=GO:0008009 |text = chemokine activity}}
| Component = {{GNF_GO|id=GO:0005576 |text = extracellular region}} {{GNF_GO|id=GO:0005615 |text = extracellular space}} {{GNF_GO|id=GO:0009986 |text = cell surface}} {{GNF_GO|id=GO:0016020 |text = membrane}} {{GNF_GO|id=GO:0016021 |text = integral to membrane}}
| Process = {{GNF_GO|id=GO:0006952 |text = defense response}} {{GNF_GO|id=GO:0006955 |text = immune response}} {{GNF_GO|id=GO:0007155 |text = cell adhesion}} {{GNF_GO|id=GO:0019221 |text = cytokine and chemokine mediated signaling pathway}} {{GNF_GO|id=GO:0030595 |text = leukocyte chemotaxis}} {{GNF_GO|id=GO:0050729 |text = positive regulation of inflammatory response}} {{GNF_GO|id=GO:0050902 |text = leukocyte adhesive activation}} {{GNF_GO|id=GO:0051041 |text = positive regulation of calcium-independent cell-cell adhesion}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 6376
| Hs_Ensembl = ENSG00000006210
| Hs_RefseqProtein = NP_002987
| Hs_RefseqmRNA = NM_002996
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 16
| Hs_GenLoc_start = 55963900
| Hs_GenLoc_end = 55976455
| Hs_Uniprot = P78423
| Mm_EntrezGene = 20312
| Mm_Ensembl = ENSMUSG00000031778
| Mm_RefseqmRNA = NM_009142
| Mm_RefseqProtein = NP_033168
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 8
| Mm_GenLoc_start = 97661333
| Mm_GenLoc_end = 97671552
| Mm_Uniprot = Q8C9Y1
}}
}}
'''Chemokine (C-X3-C motif) ligand 1''', also known as '''CX3CL1''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text =
}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Umehara H, Bloom ET, Okazaki T, ''et al.'' |title=Fractalkine in vascular biology: from basic research to clinical disease. |journal=Arterioscler. Thromb. Vasc. Biol. |volume=24 |issue= 1 |pages= 34-40 |year= 2004 |pmid= 12969992 |doi= 10.1161/01.ATV.0000095360.62479.1F }}
*{{cite journal | author=Umehara H, Tanaka M, Sawaki T, ''et al.'' |title=Fractalkine in rheumatoid arthritis and allied conditions. |journal=Mod Rheumatol |volume=16 |issue= 3 |pages= 124-30 |year= 2006 |pmid= 16767549 |doi= 10.1007/s10165-006-0471-9 }}
*{{cite journal | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171-4 |year= 1994 |pmid= 8125298 |doi= }}
*{{cite journal | author=Bazan JF, Bacon KB, Hardiman G, ''et al.'' |title=A new class of membrane-bound chemokine with a CX3C motif. |journal=Nature |volume=385 |issue= 6617 |pages= 640-4 |year= 1997 |pmid= 9024663 |doi= 10.1038/385640a0 }}
*{{cite journal | author=Pan Y, Lloyd C, Zhou H, ''et al.'' |title=Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. |journal=Nature |volume=387 |issue= 6633 |pages= 611-7 |year= 1997 |pmid= 9177350 |doi= 10.1038/42491 }}
*{{cite journal | author=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, ''et al.'' |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1-2 |pages= 149-56 |year= 1997 |pmid= 9373149 |doi= }}
*{{cite journal | author=Imai T, Hieshima K, Haskell C, ''et al.'' |title=Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. |journal=Cell |volume=91 |issue= 4 |pages= 521-30 |year= 1997 |pmid= 9390561 |doi= }}
*{{cite journal | author=Nomiyama H, Imai T, Kusuda J, ''et al.'' |title=Human chemokines fractalkine (SCYD1), MDC (SCYA22) and TARC (SCYA17) are clustered on chromosome 16q13. |journal=Cytogenet. Cell Genet. |volume=81 |issue= 1 |pages= 10-1 |year= 1998 |pmid= 9691168 |doi= }}
*{{cite journal | author=Combadiere C, Salzwedel K, Smith ED, ''et al.'' |title=Identification of CX3CR1. A chemotactic receptor for the human CX3C chemokine fractalkine and a fusion coreceptor for HIV-1. |journal=J. Biol. Chem. |volume=273 |issue= 37 |pages= 23799-804 |year= 1998 |pmid= 9726990 |doi= }}
*{{cite journal | author=Meucci O, Fatatis A, Simen AA, ''et al.'' |title=Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=95 |issue= 24 |pages= 14500-5 |year= 1998 |pmid= 9826729 |doi= }}
*{{cite journal | author=Mizoue LS, Bazan JF, Johnson EC, Handel TM |title=Solution structure and dynamics of the CX3C chemokine domain of fractalkine and its interaction with an N-terminal fragment of CX3CR1. |journal=Biochemistry |volume=38 |issue= 5 |pages= 1402-14 |year= 1999 |pmid= 9931005 |doi= 10.1021/bi9820614 }}
*{{cite journal | author=Papadopoulos EJ, Sassetti C, Saeki H, ''et al.'' |title=Fractalkine, a CX3C chemokine, is expressed by dendritic cells and is up-regulated upon dendritic cell maturation. |journal=Eur. J. Immunol. |volume=29 |issue= 8 |pages= 2551-9 |year= 1999 |pmid= 10458770 |doi= }}
*{{cite journal | author=Loftus BJ, Kim UJ, Sneddon VP, ''et al.'' |title=Genome duplications and other features in 12 Mb of DNA sequence from human chromosome 16p and 16q. |journal=Genomics |volume=60 |issue= 3 |pages= 295-308 |year= 1999 |pmid= 10493829 |doi= 10.1006/geno.1999.5927 }}
*{{cite journal | author=Tong N, Perry SW, Zhang Q, ''et al.'' |title=Neuronal fractalkine expression in HIV-1 encephalitis: roles for macrophage recruitment and neuroprotection in the central nervous system. |journal=J. Immunol. |volume=164 |issue= 3 |pages= 1333-9 |year= 2000 |pmid= 10640747 |doi= }}
*{{cite journal | author=Faure S, Meyer L, Costagliola D, ''et al.'' |title=Rapid progression to AIDS in HIV+ individuals with a structural variant of the chemokine receptor CX3CR1. |journal=Science |volume=287 |issue= 5461 |pages= 2274-7 |year= 2000 |pmid= 10731151 |doi= }}
*{{cite journal | author=Hoover DM, Mizoue LS, Handel TM, Lubkowski J |title=The crystal structure of the chemokine domain of fractalkine shows a novel quaternary arrangement. |journal=J. Biol. Chem. |volume=275 |issue= 30 |pages= 23187-93 |year= 2000 |pmid= 10770945 |doi= 10.1074/jbc.M002584200 }}
*{{cite journal | author=Meucci O, Fatatis A, Simen AA, Miller RJ |title=Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue= 14 |pages= 8075-80 |year= 2000 |pmid= 10869418 |doi= 10.1073/pnas.090017497 }}
*{{cite journal | author=Papadopoulos EJ, Fitzhugh DJ, Tkaczyk C, ''et al.'' |title=Mast cells migrate, but do not degranulate, in response to fractalkine, a membrane-bound chemokine expressed constitutively in diverse cells of the skin. |journal=Eur. J. Immunol. |volume=30 |issue= 8 |pages= 2355-61 |year= 2000 |pmid= 10940926 |doi= }}
*{{cite journal | author=Lucas AD, Chadwick N, Warren BF, ''et al.'' |title=The transmembrane form of the CX3CL1 chemokine fractalkine is expressed predominantly by epithelial cells in vivo. |journal=Am. J. Pathol. |volume=158 |issue= 3 |pages= 855-66 |year= 2001 |pmid= 11238035 |doi= }}
*{{cite journal | author=Garton KJ, Gough PJ, Blobel CP, ''et al.'' |title=Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). |journal=J. Biol. Chem. |volume=276 |issue= 41 |pages= 37993-8001 |year= 2001 |pmid= 11495925 |doi= 10.1074/jbc.M106434200 }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on CYP1B1... {November 14, 2007 4:38:26 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 4:39:06 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = Cytochrome P450, family 1, subfamily B, polypeptide 1
| HGNCid = 2597
| Symbol = CYP1B1
| AltSymbols =; CP1B; GLC3A
| OMIM = 601771
| ECnumber =
| Homologene = 68035
| MGIid = 88590
| GeneAtlas_image1 = PBB_GE_CYP1B1_202437_s_at_tn.png
| GeneAtlas_image2 = PBB_GE_CYP1B1_202434_s_at_tn.png
| GeneAtlas_image3 = PBB_GE_CYP1B1_202435_s_at_tn.png
| Function = {{GNF_GO|id=GO:0004497 |text = monooxygenase activity}} {{GNF_GO|id=GO:0005506 |text = iron ion binding}} {{GNF_GO|id=GO:0019825 |text = oxygen binding}} {{GNF_GO|id=GO:0020037 |text = heme binding}} {{GNF_GO|id=GO:0046872 |text = metal ion binding}} {{GNF_GO|id=GO:0050381 |text = unspecific monooxygenase activity}}
| Component = {{GNF_GO|id=GO:0005783 |text = endoplasmic reticulum}} {{GNF_GO|id=GO:0005792 |text = microsome}} {{GNF_GO|id=GO:0016020 |text = membrane}}
| Process = {{GNF_GO|id=GO:0006118 |text = electron transport}} {{GNF_GO|id=GO:0007601 |text = visual perception}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 1545
| Hs_Ensembl = ENSG00000138061
| Hs_RefseqProtein = NP_000095
| Hs_RefseqmRNA = NM_000104
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 2
| Hs_GenLoc_start = 38148154
| Hs_GenLoc_end = 38156796
| Hs_Uniprot = Q16678
| Mm_EntrezGene = 13078
| Mm_Ensembl = ENSMUSG00000024087
| Mm_RefseqmRNA = NM_009994
| Mm_RefseqProtein = NP_034124
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 17
| Mm_GenLoc_start = 79615279
| Mm_GenLoc_end = 79623367
| Mm_Uniprot = Q3UTK2
}}
}}
'''Cytochrome P450, family 1, subfamily B, polypeptide 1''', also known as '''CYP1B1''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. The enzyme encoded by this gene localizes to the endoplasmic reticulum and metabolizes procarcinogens such as polycyclic aromatic hydrocarbons and 17beta-estradiol. Mutations in this gene have been associated with primary congenital glaucoma; therefore it is thought that the enzyme also metabolizes a signaling molecule involved in eye development, possibly a steroid.<ref>{{cite web | title = Entrez Gene: CYP1B1 cytochrome P450, family 1, subfamily B, polypeptide 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1545| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Smith G, Stubbins MJ, Harries LW, Wolf CR |title=Molecular genetics of the human cytochrome P450 monooxygenase superfamily. |journal=Xenobiotica |volume=28 |issue= 12 |pages= 1129-65 |year= 1999 |pmid= 9890157 |doi= }}
*{{cite journal | author=Sasaki M, Kaneuchi M, Fujimoto S, ''et al.'' |title=CYP1B1 gene in endometrial cancer. |journal=Mol. Cell. Endocrinol. |volume=202 |issue= 1-2 |pages= 171-6 |year= 2004 |pmid= 12770747 |doi= }}
*{{cite journal | author=Nelson DR, Zeldin DC, Hoffman SM, ''et al.'' |title=Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. |journal=Pharmacogenetics |volume=14 |issue= 1 |pages= 1-18 |year= 2004 |pmid= 15128046 |doi= }}
*{{cite journal | author=Paracchini V, Raimondi S, Gram IT, ''et al.'' |title=Meta- and pooled analyses of the cytochrome P-450 1B1 Val432Leu polymorphism and breast cancer: a HuGE-GSEC review. |journal=Am. J. Epidemiol. |volume=165 |issue= 2 |pages= 115-25 |year= 2007 |pmid= 17053044 |doi= 10.1093/aje/kwj365 }}
*{{cite journal | author=Coca-Prados M, Escribano J |title=New perspectives in aqueous humor secretion and in glaucoma: the ciliary body as a multifunctional neuroendocrine gland. |journal=Progress in retinal and eye research |volume=26 |issue= 3 |pages= 239-62 |year= 2007 |pmid= 17321191 |doi= 10.1016/j.preteyeres.2007.01.002 }}
*{{cite journal | author=Sutter TR, Guzman K, Dold KM, Greenlee WF |title=Targets for dioxin: genes for plasminogen activator inhibitor-2 and interleukin-1 beta. |journal=Science |volume=254 |issue= 5030 |pages= 415-8 |year= 1991 |pmid= 1925598 |doi= }}
*{{cite journal | author=Sutter TR, Tang YM, Hayes CL, ''et al.'' |title=Complete cDNA sequence of a human dioxin-inducible mRNA identifies a new gene subfamily of cytochrome P450 that maps to chromosome 2. |journal=J. Biol. Chem. |volume=269 |issue= 18 |pages= 13092-9 |year= 1994 |pmid= 8175734 |doi= }}
*{{cite journal | author=Tang YM, Wo YY, Stewart J, ''et al.'' |title=Isolation and characterization of the human cytochrome P450 CYP1B1 gene. |journal=J. Biol. Chem. |volume=271 |issue= 45 |pages= 28324-30 |year= 1996 |pmid= 8910454 |doi= }}
*{{cite journal | author=Stoilov I, Akarsu AN, Sarfarazi M |title=Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. |journal=Hum. Mol. Genet. |volume=6 |issue= 4 |pages= 641-7 |year= 1997 |pmid= 9097971 |doi= }}
*{{cite journal | author=Bejjani BA, Lewis RA, Tomey KF, ''et al.'' |title=Mutations in CYP1B1, the gene for cytochrome P4501B1, are the predominant cause of primary congenital glaucoma in Saudi Arabia. |journal=Am. J. Hum. Genet. |volume=62 |issue= 2 |pages= 325-33 |year= 1998 |pmid= 9463332 |doi= }}
*{{cite journal | author=Stoilov I, Akarsu AN, Alozie I, ''et al.'' |title=Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P4501B1. |journal=Am. J. Hum. Genet. |volume=62 |issue= 3 |pages= 573-84 |year= 1998 |pmid= 9497261 |doi= }}
*{{cite journal | author=Bailey LR, Roodi N, Dupont WD, Parl FF |title=Association of cytochrome P450 1B1 (CYP1B1) polymorphism with steroid receptor status in breast cancer. |journal=Cancer Res. |volume=58 |issue= 22 |pages= 5038-41 |year= 1998 |pmid= 9823305 |doi= }}
*{{cite journal | author=Plásilová M, Stoilov I, Sarfarazi M, ''et al.'' |title=Identification of a single ancestral CYP1B1 mutation in Slovak Gypsies (Roms) affected with primary congenital glaucoma. |journal=J. Med. Genet. |volume=36 |issue= 4 |pages= 290-4 |year= 1999 |pmid= 10227395 |doi= }}
*{{cite journal | author=Lewis DF, Lake BG, George SG, ''et al.'' |title=Molecular modelling of CYP1 family enzymes CYP1A1, CYP1A2, CYP1A6 and CYP1B1 based on sequence homology with CYP102. |journal=Toxicology |volume=139 |issue= 1-2 |pages= 53-79 |year= 2000 |pmid= 10614688 |doi= }}
*{{cite journal | author=Vincent A, Billingsley G, Priston M, ''et al.'' |title=Phenotypic heterogeneity of CYP1B1: mutations in a patient with Peters' anomaly. |journal=J. Med. Genet. |volume=38 |issue= 5 |pages= 324-6 |year= 2001 |pmid= 11403040 |doi= }}
*{{cite journal | author=Bofinger DP, Feng L, Chi LH, ''et al.'' |title=Effect of TCDD exposure on CYP1A1 and CYP1B1 expression in explant cultures of human endometrium. |journal=Toxicol. Sci. |volume=62 |issue= 2 |pages= 299-314 |year= 2001 |pmid= 11452143 |doi= }}
*{{cite journal | author=Michels-Rautenstrauss KG, Mardin CY, Zenker M, ''et al.'' |title=Primary congenital glaucoma: three case reports on novel mutations and combinations of mutations in the GLC3A (CYP1B1) gene. |journal=J. Glaucoma |volume=10 |issue= 4 |pages= 354-7 |year= 2002 |pmid= 11558822 |doi= }}
*{{cite journal | author=Lai J, Vesprini D, Chu W, ''et al.'' |title=CYP gene polymorphisms and early menarche. |journal=Mol. Genet. Metab. |volume=74 |issue= 4 |pages= 449-57 |year= 2002 |pmid= 11749050 |doi= 10.1006/mgme.2001.3260 }}
*{{cite journal | author=Vincent AL, Billingsley G, Buys Y, ''et al.'' |title=Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. |journal=Am. J. Hum. Genet. |volume=70 |issue= 2 |pages= 448-60 |year= 2002 |pmid= 11774072 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on CYP3A5... {November 14, 2007 4:39:06 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 4:39:40 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = Cytochrome P450, family 3, subfamily A, polypeptide 5
| HGNCid = 2638
| Symbol = CYP3A5
| AltSymbols =; CP35; P450PCN3; PCN3
| OMIM = 605325
| ECnumber =
| Homologene = 88340
| MGIid = 88609
| GeneAtlas_image1 = PBB_GE_CYP3A5_205765_at_tn.png
| GeneAtlas_image2 = PBB_GE_CYP3A5_214234_s_at_tn.png
| Function = {{GNF_GO|id=GO:0004497 |text = monooxygenase activity}} {{GNF_GO|id=GO:0005506 |text = iron ion binding}} {{GNF_GO|id=GO:0019825 |text = oxygen binding}} {{GNF_GO|id=GO:0020037 |text = heme binding}} {{GNF_GO|id=GO:0046872 |text = metal ion binding}} {{GNF_GO|id=GO:0050381 |text = unspecific monooxygenase activity}}
| Component = {{GNF_GO|id=GO:0005624 |text = membrane fraction}} {{GNF_GO|id=GO:0005783 |text = endoplasmic reticulum}} {{GNF_GO|id=GO:0005792 |text = microsome}} {{GNF_GO|id=GO:0016020 |text = membrane}}
| Process = {{GNF_GO|id=GO:0006118 |text = electron transport}} {{GNF_GO|id=GO:0006805 |text = xenobiotic metabolic process}} {{GNF_GO|id=GO:0008202 |text = steroid metabolic process}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 1577
| Hs_Ensembl = ENSG00000106258
| Hs_RefseqProtein = NP_000768
| Hs_RefseqmRNA = NM_000777
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 7
| Hs_GenLoc_start = 99083759
| Hs_GenLoc_end = 99115557
| Hs_Uniprot = P20815
| Mm_EntrezGene = 13112
| Mm_Ensembl =
| Mm_RefseqmRNA = XM_984479
| Mm_RefseqProtein = XP_989573
| Mm_GenLoc_db =
| Mm_GenLoc_chr =
| Mm_GenLoc_start =
| Mm_GenLoc_end =
| Mm_Uniprot =
}}
}}
'''Cytochrome P450, family 3, subfamily A, polypeptide 5''', also known as '''CYP3A5''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = This gene,CYP3A5, encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and its expression is induced by glucocorticoids and some pharmacological agents. The enzyme metabolizes drugs such as nifedipine and cyclosporine as well as the steroid hormones testosterone, progesterone and androstenedione. This gene is part of a cluster of cytochrome P450 genes on chromosome 7q21.1. This cluster includes a pseudogene, CYP3A5P1, which is very similar to CYP3A5. This similarity has caused some difficulty in determining whether cloned sequences represent the gene or the pseudogene.<ref>{{cite web | title = Entrez Gene: CYP3A5 cytochrome P450, family 3, subfamily A, polypeptide 5| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1577| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Smith G, Stubbins MJ, Harries LW, Wolf CR |title=Molecular genetics of the human cytochrome P450 monooxygenase superfamily. |journal=Xenobiotica |volume=28 |issue= 12 |pages= 1129-65 |year= 1999 |pmid= 9890157 |doi= }}
*{{cite journal | author=Lee SJ, Goldstein JA |title=Functionally defective or altered CYP3A4 and CYP3A5 single nucleotide polymorphisms and their detection with genotyping tests. |journal=Pharmacogenomics |volume=6 |issue= 4 |pages= 357-71 |year= 2006 |pmid= 16004554 |doi= 10.1517/14622416.6.4.357 }}
*{{cite journal | author=Aoyama T, Yamano S, Waxman DJ, ''et al.'' |title=Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine. |journal=J. Biol. Chem. |volume=264 |issue= 18 |pages= 10388-95 |year= 1989 |pmid= 2732228 |doi= }}
*{{cite journal | author=Schuetz JD, Molowa DT, Guzelian PS |title=Characterization of a cDNA encoding a new member of the glucocorticoid-responsive cytochromes P450 in human liver. |journal=Arch. Biochem. Biophys. |volume=274 |issue= 2 |pages= 355-65 |year= 1989 |pmid= 2802615 |doi= }}
*{{cite journal | author=Murray GI, Pritchard S, Melvin WT, Burke MD |title=Cytochrome P450 CYP3A5 in the human anterior pituitary gland. |journal=FEBS Lett. |volume=364 |issue= 1 |pages= 79-82 |year= 1995 |pmid= 7750548 |doi= }}
*{{cite journal | author=Jounaïdi Y, Guzelian PS, Maurel P, Vilarem MJ |title=Sequence of the 5'-flanking region of CYP3A5: comparative analysis with CYP3A4 and CYP3A7. |journal=Biochem. Biophys. Res. Commun. |volume=205 |issue= 3 |pages= 1741-7 |year= 1995 |pmid= 7811260 |doi= 10.1006/bbrc.1994.2870 }}
*{{cite journal | author=McKinnon RA, Burgess WM, Hall PM, ''et al.'' |title=Characterisation of CYP3A gene subfamily expression in human gastrointestinal tissues. |journal=Gut |volume=36 |issue= 2 |pages= 259-67 |year= 1995 |pmid= 7883227 |doi= }}
*{{cite journal | author=Kolars JC, Lown KS, Schmiedlin-Ren P, ''et al.'' |title=CYP3A gene expression in human gut epithelium. |journal=Pharmacogenetics |volume=4 |issue= 5 |pages= 247-59 |year= 1995 |pmid= 7894497 |doi= }}
*{{cite journal | author=Lown KS, Kolars JC, Thummel KE, ''et al.'' |title=Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel. Lack of prediction by the erythromycin breath test. |journal=Drug Metab. Dispos. |volume=22 |issue= 6 |pages= 947-55 |year= 1995 |pmid= 7895614 |doi= }}
*{{cite journal | author=Schuetz JD, Beach DL, Guzelian PS |title=Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver. |journal=Pharmacogenetics |volume=4 |issue= 1 |pages= 11-20 |year= 1994 |pmid= 8004129 |doi= }}
*{{cite journal | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171-4 |year= 1994 |pmid= 8125298 |doi= }}
*{{cite journal | author=Schuetz JD, Schuetz EG, Thottassery JV, ''et al.'' |title=Identification of a novel dexamethasone responsive enhancer in the human CYP3A5 gene and its activation in human and rat liver cells. |journal=Mol. Pharmacol. |volume=49 |issue= 1 |pages= 63-72 |year= 1996 |pmid= 8569713 |doi= }}
*{{cite journal | author=Jounaïdi Y, Hyrailles V, Gervot L, Maurel P |title=Detection of CYP3A5 allelic variant: a candidate for the polymorphic expression of the protein? |journal=Biochem. Biophys. Res. Commun. |volume=221 |issue= 2 |pages= 466-70 |year= 1996 |pmid= 8619878 |doi= }}
*{{cite journal | author=Hakkola J, Pasanen M, Hukkanen J, ''et al.'' |title=Expression of xenobiotic-metabolizing cytochrome P450 forms in human full-term placenta. |journal=Biochem. Pharmacol. |volume=51 |issue= 4 |pages= 403-11 |year= 1996 |pmid= 8619884 |doi= }}
*{{cite journal | author=Hakkola J, Raunio H, Purkunen R, ''et al.'' |title=Detection of cytochrome P450 gene expression in human placenta in first trimester of pregnancy. |journal=Biochem. Pharmacol. |volume=52 |issue= 2 |pages= 379-83 |year= 1996 |pmid= 8694864 |doi= }}
*{{cite journal | author=Huang Z, Fasco MJ, Figge HL, ''et al.'' |title=Expression of cytochromes P450 in human breast tissue and tumors. |journal=Drug Metab. Dispos. |volume=24 |issue= 8 |pages= 899-905 |year= 1997 |pmid= 8869826 |doi= }}
*{{cite journal | author=Kivistö KT, Bookjans G, Fromm MF, ''et al.'' |title=Expression of CYP3A4, CYP3A5 and CYP3A7 in human duodenal tissue. |journal=British journal of clinical pharmacology |volume=42 |issue= 3 |pages= 387-9 |year= 1997 |pmid= 8877031 |doi= }}
*{{cite journal | author=Janardan SK, Lown KS, Schmiedlin-Ren P, ''et al.'' |title=Selective expression of CYP3A5 and not CYP3A4 in human blood. |journal=Pharmacogenetics |volume=6 |issue= 5 |pages= 379-85 |year= 1997 |pmid= 8946469 |doi= }}
*{{cite journal | author=Anttila S, Hukkanen J, Hakkola J, ''et al.'' |title=Expression and localization of CYP3A4 and CYP3A5 in human lung. |journal=Am. J. Respir. Cell Mol. Biol. |volume=16 |issue= 3 |pages= 242-9 |year= 1997 |pmid= 9070608 |doi= }}
*{{cite journal | author=Hukkanen J, Hakkola J, Anttila S, ''et al.'' |title=Detection of mRNA encoding xenobiotic-metabolizing cytochrome P450s in human bronchoalveolar macrophages and peripheral blood lymphocytes. |journal=Mol. Carcinog. |volume=20 |issue= 2 |pages= 224-30 |year= 1997 |pmid= 9364212 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on ERCC3... {November 14, 2007 4:39:40 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 4:40:19 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = Excision repair cross-complementing rodent repair deficiency, complementation group 3 (xeroderma pigmentosum group B complementing)
| HGNCid = 3435
| Symbol = ERCC3
| AltSymbols =; BTF2; GTF2H; RAD25; TFIIH; XPB
| OMIM = 133510
| ECnumber =
| Homologene = 96
| MGIid = 95414
| GeneAtlas_image1 = PBB_GE_ERCC3_202176_at_tn.png
| Function = {{GNF_GO|id=GO:0000166 |text = nucleotide binding}} {{GNF_GO|id=GO:0003677 |text = DNA binding}} {{GNF_GO|id=GO:0003684 |text = damaged DNA binding}} {{GNF_GO|id=GO:0004003 |text = ATP-dependent DNA helicase activity}} {{GNF_GO|id=GO:0004386 |text = helicase activity}} {{GNF_GO|id=GO:0005524 |text = ATP binding}} {{GNF_GO|id=GO:0008134 |text = transcription factor binding}} {{GNF_GO|id=GO:0016787 |text = hydrolase activity}} {{GNF_GO|id=GO:0043138 |text = 3' to 5' DNA helicase activity}}
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}} {{GNF_GO|id=GO:0005675 |text = holo TFIIH complex}}
| Process = {{GNF_GO|id=GO:0006265 |text = DNA topological change}} {{GNF_GO|id=GO:0006283 |text = transcription-coupled nucleotide-excision repair}} {{GNF_GO|id=GO:0006289 |text = nucleotide-excision repair}} {{GNF_GO|id=GO:0006350 |text = transcription}} {{GNF_GO|id=GO:0006355 |text = regulation of transcription, DNA-dependent}} {{GNF_GO|id=GO:0006366 |text = transcription from RNA polymerase II promoter}} {{GNF_GO|id=GO:0006917 |text = induction of apoptosis}} {{GNF_GO|id=GO:0007605 |text = sensory perception of sound}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 2071
| Hs_Ensembl = ENSG00000163161
| Hs_RefseqProtein = NP_000113
| Hs_RefseqmRNA = NM_000122
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 2
| Hs_GenLoc_start = 127731336
| Hs_GenLoc_end = 127768222
| Hs_Uniprot = P19447
| Mm_EntrezGene = 13872
| Mm_Ensembl = ENSMUSG00000024382
| Mm_RefseqmRNA = NM_133658
| Mm_RefseqProtein = NP_598419
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 18
| Mm_GenLoc_start = 32383341
| Mm_GenLoc_end = 32413157
| Mm_Uniprot = Q3TVD8
}}
}}
'''Excision repair cross-complementing rodent repair deficiency, complementation group 3 (xeroderma pigmentosum group B complementing)''', also known as '''ERCC3''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = ERCC3 is an ATP-dependent DNA helicase that functions in nucleotide excision repair and complements xeroderma pigmentosum group B mutations. It also is the 89 kDa subunit of basal transcription factor 2 (TFIIH) and thus functions in class II transcription.<ref>{{cite web | title = Entrez Gene: ERCC3 excision repair cross-complementing rodent repair deficiency, complementation group 3 (xeroderma pigmentosum group B complementing)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2071| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Jeang KT |title=Tat, Tat-associated kinase, and transcription. |journal=J. Biomed. Sci. |volume=5 |issue= 1 |pages= 24-7 |year= 1998 |pmid= 9570510 |doi= }}
*{{cite journal | author=Yankulov K, Bentley D |title=Transcriptional control: Tat cofactors and transcriptional elongation. |journal=Curr. Biol. |volume=8 |issue= 13 |pages= R447-9 |year= 1998 |pmid= 9651670 |doi= }}
*{{cite journal | author=Cleaver JE, Thompson LH, Richardson AS, States JC |title=A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. |journal=Hum. Mutat. |volume=14 |issue= 1 |pages= 9-22 |year= 1999 |pmid= 10447254 |doi= 10.1002/(SICI)1098-1004(1999)14:1<9::AID-HUMU2>3.0.CO;2-6 }}
*{{cite journal | author=Ma L, Weeda G, Jochemsen AG, ''et al.'' |title=Molecular and functional analysis of the XPBC/ERCC-3 promoter: transcription activity is dependent on the integrity of an Sp1-binding site. |journal=Nucleic Acids Res. |volume=20 |issue= 2 |pages= 217-24 |year= 1992 |pmid= 1741247 |doi= }}
*{{cite journal | author=Weeda G, Wiegant J, van der Ploeg M, ''et al.'' |title=Localization of the xeroderma pigmentosum group B-correcting gene ERCC3 to human chromosome 2q21. |journal=Genomics |volume=10 |issue= 4 |pages= 1035-40 |year= 1991 |pmid= 1916809 |doi= }}
*{{cite journal | author=Weeda G, Ma LB, van Ham RC, ''et al.'' |title=Structure and expression of the human XPBC/ERCC-3 gene involved in DNA repair disorders xeroderma pigmentosum and Cockayne's syndrome. |journal=Nucleic Acids Res. |volume=19 |issue= 22 |pages= 6301-8 |year= 1991 |pmid= 1956789 |doi= }}
*{{cite journal | author=Weeda G, van Ham RC, Masurel R, ''et al.'' |title=Molecular cloning and biological characterization of the human excision repair gene ERCC-3. |journal=Mol. Cell. Biol. |volume=10 |issue= 6 |pages= 2570-81 |year= 1990 |pmid= 2111438 |doi= }}
*{{cite journal | author=Weeda G, van Ham RC, Vermeulen W, ''et al.'' |title=A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome. |journal=Cell |volume=62 |issue= 4 |pages= 777-91 |year= 1990 |pmid= 2167179 |doi= }}
*{{cite journal | author=Wang XW, Yeh H, Schaeffer L, ''et al.'' |title=p53 modulation of TFIIH-associated nucleotide excision repair activity. |journal=Nat. Genet. |volume=10 |issue= 2 |pages= 188-95 |year= 1995 |pmid= 7663514 |doi= 10.1038/ng0695-188 }}
*{{cite journal | author=Maxon ME, Goodrich JA, Tjian R |title=Transcription factor IIE binds preferentially to RNA polymerase IIa and recruits TFIIH: a model for promoter clearance. |journal=Genes Dev. |volume=8 |issue= 5 |pages= 515-24 |year= 1994 |pmid= 7926747 |doi= }}
*{{cite journal | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171-4 |year= 1994 |pmid= 8125298 |doi= }}
*{{cite journal | author=Drapkin R, Reardon JT, Ansari A, ''et al.'' |title=Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. |journal=Nature |volume=368 |issue= 6473 |pages= 769-72 |year= 1994 |pmid= 8152490 |doi= 10.1038/368769a0 }}
*{{cite journal | author=van Vuuren AJ, Vermeulen W, Ma L, ''et al.'' |title=Correction of xeroderma pigmentosum repair defect by basal transcription factor BTF2 (TFIIH). |journal=EMBO J. |volume=13 |issue= 7 |pages= 1645-53 |year= 1994 |pmid= 8157004 |doi= }}
*{{cite journal | author=Schaeffer L, Moncollin V, Roy R, ''et al.'' |title=The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. |journal=EMBO J. |volume=13 |issue= 10 |pages= 2388-92 |year= 1994 |pmid= 8194528 |doi= }}
*{{cite journal | author=Guzder SN, Sung P, Bailly V, ''et al.'' |title=RAD25 is a DNA helicase required for DNA repair and RNA polymerase II transcription. |journal=Nature |volume=369 |issue= 6481 |pages= 578-81 |year= 1994 |pmid= 8202161 |doi= 10.1038/369578a0 }}
*{{cite journal | author=Vermeulen W, Scott RJ, Rodgers S, ''et al.'' |title=Clinical heterogeneity within xeroderma pigmentosum associated with mutations in the DNA repair and transcription gene ERCC3. |journal=Am. J. Hum. Genet. |volume=54 |issue= 2 |pages= 191-200 |year= 1994 |pmid= 8304337 |doi= }}
*{{cite journal | author=Scott RJ, Itin P, Kleijer WJ, ''et al.'' |title=Xeroderma pigmentosum-Cockayne syndrome complex in two patients: absence of skin tumors despite severe deficiency of DNA excision repair. |journal=J. Am. Acad. Dermatol. |volume=29 |issue= 5 Pt 2 |pages= 883-9 |year= 1993 |pmid= 8408834 |doi= }}
*{{cite journal | author=Blau J, Xiao H, McCracken S, ''et al.'' |title=Three functional classes of transcriptional activation domain. |journal=Mol. Cell. Biol. |volume=16 |issue= 5 |pages= 2044-55 |year= 1996 |pmid= 8628270 |doi= }}
*{{cite journal | author=Iyer N, Reagan MS, Wu KJ, ''et al.'' |title=Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein. |journal=Biochemistry |volume=35 |issue= 7 |pages= 2157-67 |year= 1996 |pmid= 8652557 |doi= 10.1021/bi9524124 }}
*{{cite journal | author=Hwang JR, Moncollin V, Vermeulen W, ''et al.'' |title=A 3' --> 5' XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both DNA repair and transcription. |journal=J. Biol. Chem. |volume=271 |issue= 27 |pages= 15898-904 |year= 1996 |pmid= 8663148 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on GLRA1... {November 14, 2007 4:40:19 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 4:40:49 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = Glycine receptor, alpha 1 (startle disease/hyperekplexia, stiff man syndrome)
| HGNCid = 4326
| Symbol = GLRA1
| AltSymbols =; MGC138878; MGC138879; STHE
| OMIM = 138491
| ECnumber =
| Homologene = 20083
| MGIid = 95747
| GeneAtlas_image1 = PBB_GE_GLRA1_207972_at_tn.png
| Function = {{GNF_GO|id=GO:0004872 |text = receptor activity}} {{GNF_GO|id=GO:0004890 |text = GABA-A receptor activity}} {{GNF_GO|id=GO:0005216 |text = ion channel activity}} {{GNF_GO|id=GO:0005230 |text = extracellular ligand-gated ion channel activity}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0016594 |text = glycine binding}} {{GNF_GO|id=GO:0016934 |text = extracellular-glycine-gated chloride channel activity}} {{GNF_GO|id=GO:0030594 |text = neurotransmitter receptor activity}} {{GNF_GO|id=GO:0030977 |text = taurine binding}} {{GNF_GO|id=GO:0031404 |text = chloride ion binding}}
| Component = {{GNF_GO|id=GO:0005887 |text = integral to plasma membrane}} {{GNF_GO|id=GO:0043231 |text = intracellular membrane-bound organelle}} {{GNF_GO|id=GO:0045211 |text = postsynaptic membrane}}
| Process = {{GNF_GO|id=GO:0001964 |text = startle response}} {{GNF_GO|id=GO:0006811 |text = ion transport}} {{GNF_GO|id=GO:0006821 |text = chloride transport}} {{GNF_GO|id=GO:0006936 |text = muscle contraction}} {{GNF_GO|id=GO:0007218 |text = neuropeptide signaling pathway}} {{GNF_GO|id=GO:0007268 |text = synaptic transmission}} {{GNF_GO|id=GO:0042391 |text = regulation of membrane potential}} {{GNF_GO|id=GO:0051970 |text = negative regulation of transmission of nerve impulse}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 2741
| Hs_Ensembl = ENSG00000145888
| Hs_RefseqProtein = NP_000162
| Hs_RefseqmRNA = NM_000171
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 5
| Hs_GenLoc_start = 151182361
| Hs_GenLoc_end = 151284596
| Hs_Uniprot = P23415
| Mm_EntrezGene = 14654
| Mm_Ensembl = ENSMUSG00000000263
| Mm_RefseqmRNA = XM_990138
| Mm_RefseqProtein = XP_995232
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 11
| Mm_GenLoc_start = 55357661
| Mm_GenLoc_end = 55451621
| Mm_Uniprot = Q5NCT8
}}
}}
'''Glycine receptor, alpha 1 (startle disease/hyperekplexia, stiff man syndrome)''', also known as '''GLRA1''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = The inhibitory glycine receptor mediates postsynaptic inhibition in the spinal cord and other regions of the central nervous system. It is a pentameric receptor composed of alpha and beta subunits. The GLRB gene (MIM 138492) encodes the beta subunit of the receptor.[supplied by OMIM]<ref>{{cite web | title = Entrez Gene: GLRA1 glycine receptor, alpha 1 (startle disease/hyperekplexia, stiff man syndrome)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2741| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Ryan SG, Sherman SL, Terry JC, ''et al.'' |title=Startle disease, or hyperekplexia: response to clonazepam and assignment of the gene (STHE) to chromosome 5q by linkage analysis. |journal=Ann. Neurol. |volume=31 |issue= 6 |pages= 663-8 |year= 1992 |pmid= 1355335 |doi= 10.1002/ana.410310615 }}
*{{cite journal | author=Ruiz-Gómez A, Vaello ML, Valdivieso F, Mayor F |title=Phosphorylation of the 48-kDa subunit of the glycine receptor by protein kinase C. |journal=J. Biol. Chem. |volume=266 |issue= 1 |pages= 559-66 |year= 1991 |pmid= 1845981 |doi= }}
*{{cite journal | author=Grenningloh G, Schmieden V, Schofield PR, ''et al.'' |title=Alpha subunit variants of the human glycine receptor: primary structures, functional expression and chromosomal localization of the corresponding genes. |journal=EMBO J. |volume=9 |issue= 3 |pages= 771-6 |year= 1990 |pmid= 2155780 |doi= }}
*{{cite journal | author=Langosch D, Herbold A, Schmieden V, ''et al.'' |title=Importance of Arg-219 for correct biogenesis of alpha 1 homooligomeric glycine receptors. |journal=FEBS Lett. |volume=336 |issue= 3 |pages= 540-4 |year= 1994 |pmid= 7506679 |doi= }}
*{{cite journal | author=Shiang R, Ryan SG, Zhu YZ, ''et al.'' |title=Mutational analysis of familial and sporadic hyperekplexia. |journal=Ann. Neurol. |volume=38 |issue= 1 |pages= 85-91 |year= 1995 |pmid= 7611730 |doi= 10.1002/ana.410380115 }}
*{{cite journal | author=Baker E, Sutherland GR, Schofield PR |title=Localization of the glycine receptor alpha 1 subunit gene (GLRA1) to chromosome 5q32 by FISH. |journal=Genomics |volume=22 |issue= 2 |pages= 491-3 |year= 1995 |pmid= 7806244 |doi= 10.1006/geno.1994.1419 }}
*{{cite journal | author=Rees MI, Andrew M, Jawad S, Owen MJ |title=Evidence for recessive as well as dominant forms of startle disease (hyperekplexia) caused by mutations in the alpha 1 subunit of the inhibitory glycine receptor. |journal=Hum. Mol. Genet. |volume=3 |issue= 12 |pages= 2175-9 |year= 1995 |pmid= 7881416 |doi= }}
*{{cite journal | author=Ryan SG, Buckwalter MS, Lynch JW, ''et al.'' |title=A missense mutation in the gene encoding the alpha 1 subunit of the inhibitory glycine receptor in the spasmodic mouse. |journal=Nat. Genet. |volume=7 |issue= 2 |pages= 131-5 |year= 1994 |pmid= 7920629 |doi= 10.1038/ng0694-131 }}
*{{cite journal | author=Langosch D, Laube B, Rundström N, ''et al.'' |title=Decreased agonist affinity and chloride conductance of mutant glycine receptors associated with human hereditary hyperekplexia. |journal=EMBO J. |volume=13 |issue= 18 |pages= 4223-8 |year= 1994 |pmid= 7925268 |doi= }}
*{{cite journal | author=Schorderet DF, Pescia G, Bernasconi A, Regli F |title=An additional family with Startle disease and a G1192A mutation at the alpha 1 subunit of the inhibitory glycine receptor gene. |journal=Hum. Mol. Genet. |volume=3 |issue= 7 |pages= 1201 |year= 1995 |pmid= 7981700 |doi= }}
*{{cite journal | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171-4 |year= 1994 |pmid= 8125298 |doi= }}
*{{cite journal | author=Bormann J, Rundström N, Betz H, Langosch D |title=Residues within transmembrane segment M2 determine chloride conductance of glycine receptor homo- and hetero-oligomers. |journal=EMBO J. |volume=13 |issue= 6 |pages= 1493 |year= 1994 |pmid= 8137830 |doi= }}
*{{cite journal | author=Shiang R, Ryan SG, Zhu YZ, ''et al.'' |title=Mutations in the alpha 1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. |journal=Nat. Genet. |volume=5 |issue= 4 |pages= 351-8 |year= 1994 |pmid= 8298642 |doi= 10.1038/ng1293-351 }}
*{{cite journal | author=Milani N, Dalprá L, del Prete A, ''et al.'' |title=A novel mutation (Gln266-->His) in the alpha 1 subunit of the inhibitory glycine-receptor gene (GLRA1) in hereditary hyperekplexia. |journal=Am. J. Hum. Genet. |volume=58 |issue= 2 |pages= 420-2 |year= 1996 |pmid= 8571969 |doi= }}
*{{cite journal | author=Brune W, Weber RG, Saul B, ''et al.'' |title=A GLRA1 null mutation in recessive hyperekplexia challenges the functional role of glycine receptors. |journal=Am. J. Hum. Genet. |volume=58 |issue= 5 |pages= 989-97 |year= 1996 |pmid= 8651283 |doi= }}
*{{cite journal | author=Elmslie FV, Hutchings SM, Spencer V, ''et al.'' |title=Analysis of GLRA1 in hereditary and sporadic hyperekplexia: a novel mutation in a family cosegregating for hyperekplexia and spastic paraparesis. |journal=J. Med. Genet. |volume=33 |issue= 5 |pages= 435-6 |year= 1996 |pmid= 8733061 |doi= }}
*{{cite journal | author=Monani U, Burghes AH |title=Structure of the human alpha 2 subunit gene of the glycine receptor--use of vectorette and Alu-exon PCR. |journal=Genome Res. |volume=6 |issue= 12 |pages= 1200-6 |year= 1997 |pmid= 8973915 |doi= }}
*{{cite journal | author=Seri M, Bolino A, Galietta LJ, ''et al.'' |title=Startle disease in an Italian family by mutation (K276E): The alpha-subunit of the inhibiting glycine receptor. |journal=Hum. Mutat. |volume=9 |issue= 2 |pages= 185-7 |year= 1997 |pmid= 9067762 |doi= 10.1002/(SICI)1098-1004(1997)9:2<185::AID-HUMU14>3.0.CO;2-Z }}
*{{cite journal | author=Vergouwe MN, Tijssen MA, Shiang R, ''et al.'' |title=Hyperekplexia-like syndromes without mutations in the GLRA1 gene. |journal=Clinical neurology and neurosurgery |volume=99 |issue= 3 |pages= 172-8 |year= 1998 |pmid= 9350397 |doi= }}
*{{cite journal | author=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, ''et al.'' |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1-2 |pages= 149-56 |year= 1997 |pmid= 9373149 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on JAG1... {November 14, 2007 4:30:32 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 4:31:28 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = Jagged 1 (Alagille syndrome)
| HGNCid = 6188
| Symbol = JAG1
| AltSymbols =; AGS; AHD; AWS; CD339; HJ1; JAGL1; MGC104644
| OMIM = 601920
| ECnumber =
| Homologene = 180
| MGIid = 1095416
| GeneAtlas_image1 = PBB_GE_JAG1_216268_s_at_tn.png
| GeneAtlas_image2 = PBB_GE_JAG1_209097_s_at_tn.png
| GeneAtlas_image3 = PBB_GE_JAG1_209098_s_at_tn.png
| Function = {{GNF_GO|id=GO:0005112 |text = Notch binding}} {{GNF_GO|id=GO:0005198 |text = structural molecule activity}} {{GNF_GO|id=GO:0005509 |text = calcium ion binding}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0008083 |text = growth factor activity}}
| Component = {{GNF_GO|id=GO:0005576 |text = extracellular region}} {{GNF_GO|id=GO:0005886 |text = plasma membrane}} {{GNF_GO|id=GO:0005887 |text = integral to plasma membrane}}
| Process = {{GNF_GO|id=GO:0001525 |text = angiogenesis}} {{GNF_GO|id=GO:0001709 |text = cell fate determination}} {{GNF_GO|id=GO:0002011 |text = morphogenesis of an epithelial sheet}} {{GNF_GO|id=GO:0007154 |text = cell communication}} {{GNF_GO|id=GO:0007219 |text = Notch signaling pathway}} {{GNF_GO|id=GO:0007275 |text = multicellular organismal development}} {{GNF_GO|id=GO:0007399 |text = nervous system development}} {{GNF_GO|id=GO:0009887 |text = organ morphogenesis}} {{GNF_GO|id=GO:0030097 |text = hemopoiesis}} {{GNF_GO|id=GO:0030216 |text = keratinocyte differentiation}} {{GNF_GO|id=GO:0030334 |text = regulation of cell migration}} {{GNF_GO|id=GO:0042127 |text = regulation of cell proliferation}} {{GNF_GO|id=GO:0042491 |text = auditory receptor cell differentiation}} {{GNF_GO|id=GO:0045445 |text = myoblast differentiation}} {{GNF_GO|id=GO:0045446 |text = endothelial cell differentiation}} {{GNF_GO|id=GO:0045596 |text = negative regulation of cell differentiation}} {{GNF_GO|id=GO:0045639 |text = positive regulation of myeloid cell differentiation}} {{GNF_GO|id=GO:0045747 |text = positive regulation of Notch signaling pathway}} {{GNF_GO|id=GO:0048839 |text = inner ear development}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 182
| Hs_Ensembl = ENSG00000101384
| Hs_RefseqProtein = NP_000205
| Hs_RefseqmRNA = NM_000214
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 20
| Hs_GenLoc_start = 10566334
| Hs_GenLoc_end = 10602636
| Hs_Uniprot = P78504
| Mm_EntrezGene = 16449
| Mm_Ensembl = ENSMUSG00000027276
| Mm_RefseqmRNA = XM_990538
| Mm_RefseqProtein = XP_995632
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 2
| Mm_GenLoc_start = 136772899
| Mm_GenLoc_end = 136807772
| Mm_Uniprot = Q3TS72
}}
}}
'''Jagged 1 (Alagille syndrome)''', also known as '''JAG1''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = The jagged 1 protein encoded by JAG1 is the human homolog of the Drosophilia jagged protein. Human jagged 1 is the ligand for the receptor notch 1, the latter a human homolog of the Drosophilia jagged receptor notch. Mutations that alter the jagged 1 protein cause Alagille syndrome. Jagged 1 signalling through notch 1 has also been shown to play a role in hematopoiesis.<ref>{{cite web | title = Entrez Gene: JAG1 jagged 1 (Alagille syndrome)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=182| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Piccoli DA, Spinner NB |title=Alagille syndrome and the Jagged1 gene. |journal=Semin. Liver Dis. |volume=21 |issue= 4 |pages= 525-34 |year= 2002 |pmid= 11745040 |doi= 10.1055/s-2001-19036 }}
*{{cite journal | author=Lindsell CE, Shawber CJ, Boulter J, Weinmaster G |title=Jagged: a mammalian ligand that activates Notch1. |journal=Cell |volume=80 |issue= 6 |pages= 909-17 |year= 1995 |pmid= 7697721 |doi= }}
*{{cite journal | author=Lindsell CE, Boulter J, diSibio G, ''et al.'' |title=Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand-receptor pairs that may function in neural development. |journal=Mol. Cell. Neurosci. |volume=8 |issue= 1 |pages= 14-27 |year= 1997 |pmid= 8923452 |doi= 10.1006/mcne.1996.0040 }}
*{{cite journal | author=Zimrin AB, Pepper MS, McMahon GA, ''et al.'' |title=An antisense oligonucleotide to the notch ligand jagged enhances fibroblast growth factor-induced angiogenesis in vitro. |journal=J. Biol. Chem. |volume=271 |issue= 51 |pages= 32499-502 |year= 1997 |pmid= 8955070 |doi= }}
*{{cite journal | author=Oda T, Elkahloun AG, Pike BL, ''et al.'' |title=Mutations in the human Jagged1 gene are responsible for Alagille syndrome. |journal=Nat. Genet. |volume=16 |issue= 3 |pages= 235-42 |year= 1997 |pmid= 9207787 |doi= 10.1038/ng0797-235 }}
*{{cite journal | author=Li L, Krantz ID, Deng Y, ''et al.'' |title=Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. |journal=Nat. Genet. |volume=16 |issue= 3 |pages= 243-51 |year= 1997 |pmid= 9207788 |doi= 10.1038/ng0797-243 }}
*{{cite journal | author=Oda T, Elkahloun AG, Meltzer PS, Chandrasekharappa SC |title=Identification and cloning of the human homolog (JAG1) of the rat Jagged1 gene from the Alagille syndrome critical region at 20p12. |journal=Genomics |volume=43 |issue= 3 |pages= 376-9 |year= 1997 |pmid= 9268641 |doi= 10.1006/geno.1997.4820 }}
*{{cite journal | author=Li L, Milner LA, Deng Y, ''et al.'' |title=The human homolog of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1. |journal=Immunity |volume=8 |issue= 1 |pages= 43-55 |year= 1998 |pmid= 9462510 |doi= }}
*{{cite journal | author=Krantz ID, Colliton RP, Genin A, ''et al.'' |title=Spectrum and frequency of jagged1 (JAG1) mutations in Alagille syndrome patients and their families. |journal=Am. J. Hum. Genet. |volume=62 |issue= 6 |pages= 1361-9 |year= 1998 |pmid= 9585603 |doi= }}
*{{cite journal | author=Hock B, Böhme B, Karn T, ''et al.'' |title=PDZ-domain-mediated interaction of the Eph-related receptor tyrosine kinase EphB3 and the ras-binding protein AF6 depends on the kinase activity of the receptor. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=95 |issue= 17 |pages= 9779-84 |year= 1998 |pmid= 9707552 |doi= }}
*{{cite journal | author=Gray GE, Mann RS, Mitsiadis E, ''et al.'' |title=Human ligands of the Notch receptor. |journal=Am. J. Pathol. |volume=154 |issue= 3 |pages= 785-94 |year= 1999 |pmid= 10079256 |doi= }}
*{{cite journal | author=Crosnier C, Driancourt C, Raynaud N, ''et al.'' |title=Mutations in JAGGED1 gene are predominantly sporadic in Alagille syndrome. |journal=Gastroenterology |volume=116 |issue= 5 |pages= 1141-8 |year= 1999 |pmid= 10220506 |doi= }}
*{{cite journal | author=Bash J, Zong WX, Banga S, ''et al.'' |title=Rel/NF-kappaB can trigger the Notch signaling pathway by inducing the expression of Jagged1, a ligand for Notch receptors. |journal=EMBO J. |volume=18 |issue= 10 |pages= 2803-11 |year= 1999 |pmid= 10329626 |doi= 10.1093/emboj/18.10.2803 }}
*{{cite journal | author=Pilia G, Uda M, Macis D, ''et al.'' |title=Jagged-1 mutation analysis in Italian Alagille syndrome patients. |journal=Hum. Mutat. |volume=14 |issue= 5 |pages= 394-400 |year= 2000 |pmid= 10533065 |doi= 10.1002/(SICI)1098-1004(199911)14:5<394::AID-HUMU5>3.0.CO;2-1 }}
*{{cite journal | author=Shimizu K, Chiba S, Kumano K, ''et al.'' |title=Mouse jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods. |journal=J. Biol. Chem. |volume=274 |issue= 46 |pages= 32961-9 |year= 2000 |pmid= 10551863 |doi= }}
*{{cite journal | author=Wong MK, Prudovsky I, Vary C, ''et al.'' |title=A non-transmembrane form of Jagged-1 regulates the formation of matrix-dependent chord-like structures. |journal=Biochem. Biophys. Res. Commun. |volume=268 |issue= 3 |pages= 853-9 |year= 2000 |pmid= 10679295 |doi= 10.1006/bbrc.2000.2173 }}
*{{cite journal | author=Shimizu K, Chiba S, Hosoya N, ''et al.'' |title=Binding of Delta1, Jagged1, and Jagged2 to Notch2 rapidly induces cleavage, nuclear translocation, and hyperphosphorylation of Notch2. |journal=Mol. Cell. Biol. |volume=20 |issue= 18 |pages= 6913-22 |year= 2000 |pmid= 10958687 |doi= }}
*{{cite journal | author=Shimizu K, Chiba S, Saito T, ''et al.'' |title=Physical interaction of Delta1, Jagged1, and Jagged2 with Notch1 and Notch3 receptors. |journal=Biochem. Biophys. Res. Commun. |volume=276 |issue= 1 |pages= 385-9 |year= 2000 |pmid= 11006133 |doi= 10.1006/bbrc.2000.3469 }}
*{{cite journal | author=Heritage ML, MacMillan JC, Colliton RP, ''et al.'' |title=Jagged1 (JAG1) mutation detection in an Australian Alagille syndrome population. |journal=Hum. Mutat. |volume=16 |issue= 5 |pages= 408-16 |year= 2000 |pmid= 11058898 |doi= 10.1002/1098-1004(200011)16:5<408::AID-HUMU5>3.0.CO;2-9 }}
*{{cite journal | author=Karanu FN, Murdoch B, Gallacher L, ''et al.'' |title=The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. |journal=J. Exp. Med. |volume=192 |issue= 9 |pages= 1365-72 |year= 2000 |pmid= 11067884 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on NFATC2... {November 14, 2007 4:40:49 PM PST}
- SEARCH REDIRECT: Control Box Found: NFATC2 {November 14, 2007 4:41:24 PM PST}
- UPDATE PROTEIN BOX: Updating Protein Box, No errors. {November 14, 2007 4:41:25 PM PST}
- UPDATE SUMMARY: Updating Summary, No Errors. {November 14, 2007 4:41:25 PM PST}
- UPDATE CITATIONS: Updating Citations, No Errors. {November 14, 2007 4:41:25 PM PST}
- UPDATED: Updated protein page: NFATC2 {November 14, 2007 4:41:31 PM PST}
- INFO: Beginning work on P2RX7... {November 14, 2007 4:41:31 PM PST}
- SEARCH REDIRECT: Control Box Found: P2RX7 {November 14, 2007 4:42:06 PM PST}
- UPDATE PROTEIN BOX: Updating Protein Box, No errors. {November 14, 2007 4:42:08 PM PST}
- UPDATE SUMMARY: Updating Summary, No Errors. {November 14, 2007 4:42:08 PM PST}
- UPDATE CITATIONS: Updating Citations, No Errors. {November 14, 2007 4:42:08 PM PST}
- UPDATED: Updated protein page: P2RX7 {November 14, 2007 4:42:14 PM PST}
- INFO: Beginning work on POLR2F... {November 14, 2007 4:42:14 PM PST}
- SEARCH REDIRECT: Control Box Found: POLR2F {November 14, 2007 4:42:50 PM PST}
- UPDATE PROTEIN BOX: Updating Protein Box, No errors. {November 14, 2007 4:42:51 PM PST}
- UPDATE SUMMARY: Updating Summary, No Errors. {November 14, 2007 4:42:51 PM PST}
- UPDATE CITATIONS: Updating Citations, No Errors. {November 14, 2007 4:42:51 PM PST}
- UPDATED: Updated protein page: POLR2F {November 14, 2007 4:42:58 PM PST}
- INFO: Beginning work on POLR2L... {November 14, 2007 4:42:58 PM PST}
- SEARCH REDIRECT: Control Box Found: POLR2L {November 14, 2007 4:43:43 PM PST}
- UPDATE PROTEIN BOX: Updating Protein Box, No errors. {November 14, 2007 4:43:45 PM PST}
- UPDATE SUMMARY: Updating Summary, No Errors. {November 14, 2007 4:43:45 PM PST}
- UPDATE CITATIONS: Updating Citations, No Errors. {November 14, 2007 4:43:45 PM PST}
- UPDATED: Updated protein page: POLR2L {November 14, 2007 4:44:02 PM PST}
- INFO: Beginning work on S100A9... {November 14, 2007 4:44:02 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 4:44:51 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_S100A9_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1irj.
| PDB = {{PDB2|1irj}}, {{PDB2|1xk4}}
| Name = S100 calcium binding protein A9
| HGNCid = 10499
| Symbol = S100A9
| AltSymbols =; MIF; 60B8AG; CFAG; NIF; CAGB; CGLB; L1AG; LIAG; MAC387; MRP14; P14
| OMIM = 123886
| ECnumber =
| Homologene = 2227
| MGIid = 1338947
| GeneAtlas_image1 = PBB_GE_S100A9_203535_at_tn.png
| Function = {{GNF_GO|id=GO:0004871 |text = signal transducer activity}} {{GNF_GO|id=GO:0005509 |text = calcium ion binding}}
| Component = {{GNF_GO|id=GO:0005615 |text = extracellular space}}
| Process = {{GNF_GO|id=GO:0006954 |text = inflammatory response}} {{GNF_GO|id=GO:0007267 |text = cell-cell signaling}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 6280
| Hs_Ensembl = ENSG00000163220
| Hs_RefseqProtein = NP_002956
| Hs_RefseqmRNA = NM_002965
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 1
| Hs_GenLoc_start = 151596954
| Hs_GenLoc_end = 151600127
| Hs_Uniprot = P06702
| Mm_EntrezGene = 20202
| Mm_Ensembl = ENSMUSG00000056071
| Mm_RefseqmRNA = NM_009114
| Mm_RefseqProtein = NP_033140
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 3
| Mm_GenLoc_start = 90778560
| Mm_GenLoc_end = 90781618
| Mm_Uniprot = Q3UP42
}}
}}
'''S100 calcium binding protein A9''', also known as '''S100A9''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = The protein encoded by this gene is a member of the S100 family of proteins containing 2 EF-hand calcium-binding motifs. S100 proteins are localized in the cytoplasm and/or nucleus of a wide range of cells, and involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. S100 genes include at least 13 members which are located as a cluster on chromosome 1q21. This protein may function in the inhibition of casein kinase and altered expression of this protein is associated with the disease cystic fibrosis.<ref>{{cite web | title = Entrez Gene: S100A9 S100 calcium binding protein A9| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6280| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Schäfer BW, Heizmann CW |title=The S100 family of EF-hand calcium-binding proteins: functions and pathology. |journal=Trends Biochem. Sci. |volume=21 |issue= 4 |pages= 134-40 |year= 1996 |pmid= 8701470 |doi= }}
*{{cite journal | author=Kerkhoff C, Klempt M, Sorg C |title=Novel insights into structure and function of MRP8 (S100A8) and MRP14 (S100A9). |journal=Biochim. Biophys. Acta |volume=1448 |issue= 2 |pages= 200-11 |year= 1999 |pmid= 9920411 |doi= }}
*{{cite journal | author=Nacken W, Roth J, Sorg C, Kerkhoff C |title=S100A9/S100A8: Myeloid representatives of the S100 protein family as prominent players in innate immunity. |journal=Microsc. Res. Tech. |volume=60 |issue= 6 |pages= 569-80 |year= 2003 |pmid= 12645005 |doi= 10.1002/jemt.10299 }}
*{{cite journal | author=Rasmussen HH, van Damme J, Puype M, ''et al.'' |title=Microsequences of 145 proteins recorded in the two-dimensional gel protein database of normal human epidermal keratinocytes. |journal=Electrophoresis |volume=13 |issue= 12 |pages= 960-9 |year= 1993 |pmid= 1286667 |doi= }}
*{{cite journal | author=Longbottom D, Sallenave JM, van Heyningen V |title=Subunit structure of calgranulins A and B obtained from sputum, plasma, granulocytes and cultured epithelial cells. |journal=Biochim. Biophys. Acta |volume=1120 |issue= 2 |pages= 215-22 |year= 1992 |pmid= 1562590 |doi= }}
*{{cite journal | author=Dorin JR, Emslie E, van Heyningen V |title=Related calcium-binding proteins map to the same subregion of chromosome 1q and to an extended region of synteny on mouse chromosome 3. |journal=Genomics |volume=8 |issue= 3 |pages= 420-6 |year= 1991 |pmid= 2149559 |doi= }}
*{{cite journal | author=Edgeworth J, Freemont P, Hogg N |title=Ionomycin-regulated phosphorylation of the myeloid calcium-binding protein p14. |journal=Nature |volume=342 |issue= 6246 |pages= 189-92 |year= 1989 |pmid= 2478889 |doi= 10.1038/342189a0 }}
*{{cite journal | author=Murao S, Collart FR, Huberman E |title=A protein containing the cystic fibrosis antigen is an inhibitor of protein kinases. |journal=J. Biol. Chem. |volume=264 |issue= 14 |pages= 8356-60 |year= 1989 |pmid= 2656677 |doi= }}
*{{cite journal | author=Odink K, Cerletti N, Brüggen J, ''et al.'' |title=Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. |journal=Nature |volume=330 |issue= 6143 |pages= 80-2 |year= 1987 |pmid= 3313057 |doi= 10.1038/330080a0 }}
*{{cite journal | author=Lagasse E, Clerc RG |title=Cloning and expression of two human genes encoding calcium-binding proteins that are regulated during myeloid differentiation. |journal=Mol. Cell. Biol. |volume=8 |issue= 6 |pages= 2402-10 |year= 1988 |pmid= 3405210 |doi= }}
*{{cite journal | author=Schäfer BW, Wicki R, Engelkamp D, ''et al.'' |title=Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: rationale for a new nomenclature of the S100 calcium-binding protein family. |journal=Genomics |volume=25 |issue= 3 |pages= 638-43 |year= 1995 |pmid= 7759097 |doi= }}
*{{cite journal | author=Engelkamp D, Schäfer BW, Mattei MG, ''et al.'' |title=Six S100 genes are clustered on human chromosome 1q21: identification of two genes coding for the two previously unreported calcium-binding proteins S100D and S100E. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=90 |issue= 14 |pages= 6547-51 |year= 1993 |pmid= 8341667 |doi= }}
*{{cite journal | author=Roth J, Burwinkel F, van den Bos C, ''et al.'' |title=MRP8 and MRP14, S-100-like proteins associated with myeloid differentiation, are translocated to plasma membrane and intermediate filaments in a calcium-dependent manner. |journal=Blood |volume=82 |issue= 6 |pages= 1875-83 |year= 1993 |pmid= 8400238 |doi= }}
*{{cite journal | author=Miyasaki KT, Bodeau AL, Murthy AR, Lehrer RI |title=In vitro antimicrobial activity of the human neutrophil cytosolic S-100 protein complex, calprotectin, against Capnocytophaga sputigena. |journal=J. Dent. Res. |volume=72 |issue= 2 |pages= 517-23 |year= 1993 |pmid= 8423249 |doi= }}
*{{cite journal | author=Newton RA, Hogg N |title=The human S100 protein MRP-14 is a novel activator of the beta 2 integrin Mac-1 on neutrophils. |journal=J. Immunol. |volume=160 |issue= 3 |pages= 1427-35 |year= 1998 |pmid= 9570563 |doi= }}
*{{cite journal | author=Vogl T, Pröpper C, Hartmann M, ''et al.'' |title=S100A12 is expressed exclusively by granulocytes and acts independently from MRP8 and MRP14. |journal=J. Biol. Chem. |volume=274 |issue= 36 |pages= 25291-6 |year= 1999 |pmid= 10464253 |doi= }}
*{{cite journal | author=Kerkhoff C, Klempt M, Kaever V, Sorg C |title=The two calcium-binding proteins, S100A8 and S100A9, are involved in the metabolism of arachidonic acid in human neutrophils. |journal=J. Biol. Chem. |volume=274 |issue= 46 |pages= 32672-9 |year= 2000 |pmid= 10551823 |doi= }}
*{{cite journal | author=Stulík J, Koupilova K, Osterreicher J, ''et al.'' |title=Protein abundance alterations in matched sets of macroscopically normal colon mucosa and colorectal carcinoma. |journal=Electrophoresis |volume=20 |issue= 18 |pages= 3638-46 |year= 2000 |pmid= 10612291 |doi= 10.1002/(SICI)1522-2683(19991201)20:18<3638::AID-ELPS3638>3.0.CO;2-W }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on SPI1... {November 14, 2007 4:45:37 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 4:46:14 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_SPI1_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1pue.
| PDB = {{PDB2|1pue}}
| Name = Spleen focus forming virus (SFFV) proviral integration oncogene spi1
| HGNCid = 11241
| Symbol = SPI1
| AltSymbols =; OF; PU.1; SFPI1; SPI-1; SPI-A
| OMIM = 165170
| ECnumber =
| Homologene = 2346
| MGIid = 98282
| GeneAtlas_image1 = PBB_GE_SPI1_205312_at_tn.png
| Function = {{GNF_GO|id=GO:0003700 |text = transcription factor activity}} {{GNF_GO|id=GO:0003723 |text = RNA binding}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0016563 |text = transcription activator activity}} {{GNF_GO|id=GO:0043565 |text = sequence-specific DNA binding}}
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}}
| Process = {{GNF_GO|id=GO:0000122 |text = negative regulation of transcription from RNA polymerase II promoter}} {{GNF_GO|id=GO:0006350 |text = transcription}} {{GNF_GO|id=GO:0030098 |text = lymphocyte differentiation}} {{GNF_GO|id=GO:0030225 |text = macrophage differentiation}} {{GNF_GO|id=GO:0030851 |text = granulocyte differentiation}} {{GNF_GO|id=GO:0045893 |text = positive regulation of transcription, DNA-dependent}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 6688
| Hs_Ensembl = ENSG00000066336
| Hs_RefseqProtein = NP_001074016
| Hs_RefseqmRNA = NM_001080547
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 11
| Hs_GenLoc_start = 47332988
| Hs_GenLoc_end = 47356674
| Hs_Uniprot = P17947
| Mm_EntrezGene = 20375
| Mm_Ensembl = ENSMUSG00000002111
| Mm_RefseqmRNA = XM_001003437
| Mm_RefseqProtein = XP_001003437
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 2
| Mm_GenLoc_start = 90897636
| Mm_GenLoc_end = 90916595
| Mm_Uniprot = Q3U5L4
}}
}}
'''Spleen focus forming virus (SFFV) proviral integration oncogene spi1''', also known as '''SPI1''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = This gene encodes an ETS-domain transcription factor that activates gene expression during myeloid and B-lymphoid cell development. The nuclear protein binds to a purine-rich sequence known as the PU-box found near the promoters of target genes, and regulates their expression in coordination with other transcription factors and cofactors. The protein can also regulate alternative splicing of target genes. Multiple transcript variants encoding different isoforms have been found for this gene.<ref>{{cite web | title = Entrez Gene: SPI1 spleen focus forming virus (SFFV) proviral integration oncogene spi1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6688| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Ray D, Culine S, Tavitain A, Moreau-Gachelin F |title=The human homologue of the putative proto-oncogene Spi-1: characterization and expression in tumors. |journal=Oncogene |volume=5 |issue= 5 |pages= 663-8 |year= 1990 |pmid= 1693183 |doi= }}
*{{cite journal | author=Klemsz MJ, McKercher SR, Celada A, ''et al.'' |title=The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. |journal=Cell |volume=61 |issue= 1 |pages= 113-24 |year= 1990 |pmid= 2180582 |doi= }}
*{{cite journal | author=Nguyen VC, Ray D, Gross MS, ''et al.'' |title=Localization of the human oncogene SPI1 on chromosome 11, region p11.22. |journal=Hum. Genet. |volume=84 |issue= 6 |pages= 542-6 |year= 1990 |pmid= 2338340 |doi= }}
*{{cite journal | author=Chen H, Ray-Gallet D, Zhang P, ''et al.'' |title=PU.1 (Spi-1) autoregulates its expression in myeloid cells. |journal=Oncogene |volume=11 |issue= 8 |pages= 1549-60 |year= 1995 |pmid= 7478579 |doi= }}
*{{cite journal | author=Nagulapalli S, Pongubala JM, Atchison ML |title=Multiple proteins physically interact with PU.1. Transcriptional synergy with NF-IL6 beta (C/EBP delta, CRP3). |journal=J. Immunol. |volume=155 |issue= 9 |pages= 4330-8 |year= 1995 |pmid= 7594592 |doi= }}
*{{cite journal | author=Pongubala JM, Atchison ML |title=Activating transcription factor 1 and cyclic AMP response element modulator can modulate the activity of the immunoglobulin kappa 3' enhancer. |journal=J. Biol. Chem. |volume=270 |issue= 17 |pages= 10304-13 |year= 1995 |pmid= 7730336 |doi= }}
*{{cite journal | author=Hromas R, Orazi A, Neiman RS, ''et al.'' |title=Hematopoietic lineage- and stage-restricted expression of the ETS oncogene family member PU.1. |journal=Blood |volume=82 |issue= 10 |pages= 2998-3004 |year= 1993 |pmid= 8219191 |doi= }}
*{{cite journal | author=Hagemeier C, Bannister AJ, Cook A, Kouzarides T |title=The activation domain of transcription factor PU.1 binds the retinoblastoma (RB) protein and the transcription factor TFIID in vitro: RB shows sequence similarity to TFIID and TFIIB. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=90 |issue= 4 |pages= 1580-4 |year= 1993 |pmid= 8434021 |doi= }}
*{{cite journal | author=Hallier M, Tavitian A, Moreau-Gachelin F |title=The transcription factor Spi-1/PU.1 binds RNA and interferes with the RNA-binding protein p54nrb. |journal=J. Biol. Chem. |volume=271 |issue= 19 |pages= 11177-81 |year= 1996 |pmid= 8626664 |doi= }}
*{{cite journal | author=Bassuk AG, Anandappa RT, Leiden JM |title=Physical interactions between Ets and NF-kappaB/NFAT proteins play an important role in their cooperative activation of the human immunodeficiency virus enhancer in T cells. |journal=J. Virol. |volume=71 |issue= 5 |pages= 3563-73 |year= 1997 |pmid= 9094628 |doi= }}
*{{cite journal | author=Li SL, Valente AJ, Zhao SJ, Clark RA |title=PU.1 is essential for p47(phox) promoter activity in myeloid cells. |journal=J. Biol. Chem. |volume=272 |issue= 28 |pages= 17802-9 |year= 1997 |pmid= 9211934 |doi= }}
*{{cite journal | author=Tsukada J, Misago M, Serino Y, ''et al.'' |title=Human T-cell leukemia virus type I Tax transactivates the promoter of human prointerleukin-1beta gene through association with two transcription factors, nuclear factor-interleukin-6 and Spi-1. |journal=Blood |volume=90 |issue= 8 |pages= 3142-53 |year= 1997 |pmid= 9376596 |doi= }}
*{{cite journal | author=Hallier M, Lerga A, Barnache S, ''et al.'' |title=The transcription factor Spi-1/PU.1 interacts with the potential splicing factor TLS. |journal=J. Biol. Chem. |volume=273 |issue= 9 |pages= 4838-42 |year= 1998 |pmid= 9478924 |doi= }}
*{{cite journal | author=Suzuki S, Kumatori A, Haagen IA, ''et al.'' |title=PU.1 as an essential activator for the expression of gp91(phox) gene in human peripheral neutrophils, monocytes, and B lymphocytes. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=95 |issue= 11 |pages= 6085-90 |year= 1998 |pmid= 9600921 |doi= }}
*{{cite journal | author=Carrère S, Verger A, Flourens A, ''et al.'' |title=Erg proteins, transcription factors of the Ets family, form homo, heterodimers and ternary complexes via two distinct domains. |journal=Oncogene |volume=16 |issue= 25 |pages= 3261-8 |year= 1998 |pmid= 9681824 |doi= 10.1038/sj.onc.1201868 }}
*{{cite journal | author=Sato M, Morii E, Takebayashi-Suzuki K, ''et al.'' |title=Microphthalmia-associated transcription factor interacts with PU.1 and c-Fos: determination of their subcellular localization. |journal=Biochem. Biophys. Res. Commun. |volume=254 |issue= 2 |pages= 384-7 |year= 1999 |pmid= 9918847 |doi= 10.1006/bbrc.1998.9918 }}
*{{cite journal | author=Brass AL, Zhu AQ, Singh H |title=Assembly requirements of PU.1-Pip (IRF-4) activator complexes: inhibiting function in vivo using fused dimers. |journal=EMBO J. |volume=18 |issue= 4 |pages= 977-91 |year= 1999 |pmid= 10022840 |doi= 10.1093/emboj/18.4.977 }}
*{{cite journal | author=Yamamoto H, Kihara-Negishi F, Yamada T, ''et al.'' |title=Physical and functional interactions between the transcription factor PU.1 and the coactivator CBP. |journal=Oncogene |volume=18 |issue= 7 |pages= 1495-501 |year= 1999 |pmid= 10050886 |doi= 10.1038/sj.onc.1202427 }}
*{{cite journal | author=Rao S, Matsumura A, Yoon J, Simon MC |title=SPI-B activates transcription via a unique proline, serine, and threonine domain and exhibits DNA binding affinity differences from PU.1. |journal=J. Biol. Chem. |volume=274 |issue= 16 |pages= 11115-24 |year= 1999 |pmid= 10196196 |doi= }}
*{{cite journal | author=Mao S, Frank RC, Zhang J, ''et al.'' |title=Functional and physical interactions between AML1 proteins and an ETS protein, MEF: implications for the pathogenesis of t(8;21)-positive leukemias. |journal=Mol. Cell. Biol. |volume=19 |issue= 5 |pages= 3635-44 |year= 1999 |pmid= 10207087 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on YY1... {November 14, 2007 4:46:14 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 4:46:55 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_YY1_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1ubd.
| PDB = {{PDB2|1ubd}}
| Name = YY1 transcription factor
| HGNCid = 12856
| Symbol = YY1
| AltSymbols =; DELTA; NF-E1; UCRBP; YIN-YANG-1
| OMIM = 600013
| ECnumber =
| Homologene = 2556
| MGIid = 99150
| GeneAtlas_image1 = PBB_GE_YY1_201901_s_at_tn.png
| GeneAtlas_image2 = PBB_GE_YY1_201902_s_at_tn.png
| Function = {{GNF_GO|id=GO:0003700 |text = transcription factor activity}} {{GNF_GO|id=GO:0003713 |text = transcription coactivator activity}} {{GNF_GO|id=GO:0003714 |text = transcription corepressor activity}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0008270 |text = zinc ion binding}} {{GNF_GO|id=GO:0046872 |text = metal ion binding}}
| Component = {{GNF_GO|id=GO:0005622 |text = intracellular}} {{GNF_GO|id=GO:0005634 |text = nucleus}} {{GNF_GO|id=GO:0005667 |text = transcription factor complex}} {{GNF_GO|id=GO:0031519 |text = PcG protein complex}}
| Process = {{GNF_GO|id=GO:0006350 |text = transcription}} {{GNF_GO|id=GO:0006357 |text = regulation of transcription from RNA polymerase II promoter}} {{GNF_GO|id=GO:0009952 |text = anterior/posterior pattern formation}} {{GNF_GO|id=GO:0019735 |text = antimicrobial humoral response}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 7528
| Hs_Ensembl = ENSG00000100811
| Hs_RefseqProtein = NP_003394
| Hs_RefseqmRNA = NM_003403
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 14
| Hs_GenLoc_start = 99774855
| Hs_GenLoc_end = 99814557
| Hs_Uniprot = P25490
| Mm_EntrezGene = 22632
| Mm_Ensembl = ENSMUSG00000021264
| Mm_RefseqmRNA = NM_009537
| Mm_RefseqProtein = NP_033563
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 12
| Mm_GenLoc_start = 109241118
| Mm_GenLoc_end = 109264439
| Mm_Uniprot = Q3TLF0
}}
}}
'''YY1 transcription factor''', also known as '''YY1''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = YY1 is a ubiquitously distributed transcription factor belonging to the GLI-Kruppel class of zinc finger proteins. The protein is involved in repressing and activating a diverse number of promoters. YY1 may direct histone deacetylases and histone acetyltransferases to a promoter in order to activate or repress the promoter, thus implicating histone modification in the function of YY1.<ref>{{cite web | title = Entrez Gene: YY1 YY1 transcription factor| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=7528| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Thomas MJ, Seto E |title=Unlocking the mechanisms of transcription factor YY1: are chromatin modifying enzymes the key? |journal=Gene |volume=236 |issue= 2 |pages= 197-208 |year= 1999 |pmid= 10452940 |doi= }}
*{{cite journal | author=Shi Y, Seto E, Chang LS, Shenk T |title=Transcriptional repression by YY1, a human GLI-Krüppel-related protein, and relief of repression by adenovirus E1A protein. |journal=Cell |volume=67 |issue= 2 |pages= 377-88 |year= 1991 |pmid= 1655281 |doi= }}
*{{cite journal | author=Park K, Atchison ML |title=Isolation of a candidate repressor/activator, NF-E1 (YY-1, delta), that binds to the immunoglobulin kappa 3' enhancer and the immunoglobulin heavy-chain mu E1 site. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=88 |issue= 21 |pages= 9804-8 |year= 1991 |pmid= 1946405 |doi= }}
*{{cite journal | author=Yang WM, Inouye CJ, Seto E |title=Cyclophilin A and FKBP12 interact with YY1 and alter its transcriptional activity. |journal=J. Biol. Chem. |volume=270 |issue= 25 |pages= 15187-93 |year= 1995 |pmid= 7541038 |doi= }}
*{{cite journal | author=Lee JS, Galvin KM, See RH, ''et al.'' |title=Relief of YY1 transcriptional repression by adenovirus E1A is mediated by E1A-associated protein p300. |journal=Genes Dev. |volume=9 |issue= 10 |pages= 1188-98 |year= 1995 |pmid= 7758944 |doi= }}
*{{cite journal | author=Zhou Q, Gedrich RW, Engel DA |title=Transcriptional repression of the c-fos gene by YY1 is mediated by a direct interaction with ATF/CREB. |journal=J. Virol. |volume=69 |issue= 7 |pages= 4323-30 |year= 1995 |pmid= 7769693 |doi= }}
*{{cite journal | author=Zhu W, Lossie AC, Camper SA, Gumucio DL |title=Chromosomal localization of the transcription factor YY1 in the mouse and human. |journal=Mamm. Genome |volume=5 |issue= 4 |pages= 234-6 |year= 1994 |pmid= 7912122 |doi= }}
*{{cite journal | author=Shrivastava A, Saleque S, Kalpana GV, ''et al.'' |title=Inhibition of transcriptional regulator Yin-Yang-1 by association with c-Myc. |journal=Science |volume=262 |issue= 5141 |pages= 1889-92 |year= 1994 |pmid= 8266081 |doi= }}
*{{cite journal | author=Becker KG, Swergold GD, Ozato K, Thayer RE |title=Binding of the ubiquitous nuclear transcription factor YY1 to a cis regulatory sequence in the human LINE-1 transposable element. |journal=Hum. Mol. Genet. |volume=2 |issue= 10 |pages= 1697-702 |year= 1994 |pmid= 8268924 |doi= }}
*{{cite journal | author=Margolis DM, Somasundaran M, Green MR |title=Human transcription factor YY1 represses human immunodeficiency virus type 1 transcription and virion production. |journal=J. Virol. |volume=68 |issue= 2 |pages= 905-10 |year= 1994 |pmid= 8289393 |doi= }}
*{{cite journal | author=Lee JS, Galvin KM, Shi Y |title=Evidence for physical interaction between the zinc-finger transcription factors YY1 and Sp1. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=90 |issue= 13 |pages= 6145-9 |year= 1993 |pmid= 8327494 |doi= }}
*{{cite journal | author=Yang WM, Inouye C, Zeng Y, ''et al.'' |title=Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=93 |issue= 23 |pages= 12845-50 |year= 1996 |pmid= 8917507 |doi= }}
*{{cite journal | author=Houbaviy HB, Usheva A, Shenk T, Burley SK |title=Cocrystal structure of YY1 bound to the adeno-associated virus P5 initiator. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=93 |issue= 24 |pages= 13577-82 |year= 1997 |pmid= 8942976 |doi= }}
*{{cite journal | author=Kalenik JL, Chen D, Bradley ME, ''et al.'' |title=Yeast two-hybrid cloning of a novel zinc finger protein that interacts with the multifunctional transcription factor YY1. |journal=Nucleic Acids Res. |volume=25 |issue= 4 |pages= 843-9 |year= 1997 |pmid= 9016636 |doi= }}
*{{cite journal | author=Cole EG, Gaston K |title=A functional YY1 binding site is necessary and sufficient to activate Surf-1 promoter activity in response to serum growth factors. |journal=Nucleic Acids Res. |volume=25 |issue= 18 |pages= 3705-11 |year= 1997 |pmid= 9278494 |doi= }}
*{{cite journal | author=Yang WM, Yao YL, Sun JM, ''et al.'' |title=Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. |journal=J. Biol. Chem. |volume=272 |issue= 44 |pages= 28001-7 |year= 1997 |pmid= 9346952 |doi= }}
*{{cite journal | author=Romerio F, Gabriel MN, Margolis DM |title=Repression of human immunodeficiency virus type 1 through the novel cooperation of human factors YY1 and LSF. |journal=J. Virol. |volume=71 |issue= 12 |pages= 9375-82 |year= 1997 |pmid= 9371597 |doi= }}
*{{cite journal | author=McNeil S, Guo B, Stein JL, ''et al.'' |title=Targeting of the YY1 transcription factor to the nucleolus and the nuclear matrix in situ: the C-terminus is a principal determinant for nuclear trafficking. |journal=J. Cell. Biochem. |volume=68 |issue= 4 |pages= 500-10 |year= 1998 |pmid= 9493912 |doi= }}
*{{cite journal | author=Viles JH, Patel SU, Mitchell JB, ''et al.'' |title=Design, synthesis and structure of a zinc finger with an artificial beta-turn. |journal=J. Mol. Biol. |volume=279 |issue= 4 |pages= 973-86 |year= 1998 |pmid= 9642075 |doi= 10.1006/jmbi.1998.1764 }}
*{{cite journal | author=Yao YL, Dupont BR, Ghosh S, ''et al.'' |title=Cloning, chromosomal localization and promoter analysis of the human transcription factor YY1. |journal=Nucleic Acids Res. |volume=26 |issue= 16 |pages= 3776-83 |year= 1998 |pmid= 9685495 |doi= }}
}}
{{refend}}
{{protein-stub}}
end log.