Talk:Proof of Wallis product/to do

From Wikipedia, the free encyclopedia

  • Move the derivation of

\frac{\sin(x)}{x} = \left(1 - \frac{x^2}{\pi^2}\right)\left(1 - \frac{x^2}{4\pi^2}\right)\left(1 - \frac{x^2}{9\pi^2}\right) \cdots

to Euler-Wallis formula.

  • Note how to use this formula to compute

\sum_{n=1}^{\infty} \frac{1}{n^2}.
  • A historical account would be nice.