Proof of Bhaskara's lemma

From Wikipedia, the free encyclopedia

Bhaskara's Lemma is an identity used as a lemma during the chakravala method. It states that:

\, Nx^2 + k = y^2\implies \,N\left(\frac{mx + y}{k}\right)^2 + \frac{m^2 - N}{k} = \left(\frac{my + Nx}{k}\right)^2.

[edit] Proof

We begin with an identity, verified by expansion (or substitution into the Brahmagupta-Fibonacci identity with a=m,c=y,b=i\sqrt{N},c=ix\sqrt{N}) :

N(mx+y)^2-(my+Nx)^2=-(m^2-N)(y^2-Nx^2)\Longleftrightarrow \frac{N(mx+y)^2-(my+Nx)^2}{y^2-Nx^2}=-(m^2-N)

Since y2Nx2 = k, we have that:

\frac{N(mx+y)^2-(my+Nx)^2}{k}=-(m^2-N)\Longleftrightarrow\frac{N(mx+y)^2-(my+Nx)^2}{k^2}=\frac{-(m^2-N)}{k}

Suitable re-arrangement of this equation yields Bhaskara's Lemma:

N\left(\frac{mx + y}{k}\right)^2 + \frac{m^2 - N}{k} = \left(\frac{my + Nx}{k}\right)^2

[edit] References

  • C. O. Selenius, "Rationale of the chakravala process of Jayadeva and Bhaskara II", Historia Mathematica, 2 (1975), 167-184.
  • C. O. Selenius, Kettenbruch theoretische Erklarung der zyklischen Methode zur Losung der Bhaskara-Pell-Gleichung, Acta Acad. Abo. Math. Phys. 23 (10) (1963).
  • George Gheverghese Joseph, The Crest of the Peacock: Non-European Roots of Mathematics (1975).

[edit] External links