Prime zeta function

From Wikipedia, the free encyclopedia

In mathematics, the Prime zeta function is an analogue of the Riemann zeta function. It is defined as the analytic continuation to \mathbb{C} of the following infinite series, which converges for \Re(s) > 1:

P(s)=\sum_{p\,\in\mathrm{\,primes}} \frac{1}{p^s}

[edit] Integral of the prime zeta function

\int\sum_{p\,\in\mathrm{\,primes}}\frac{1}{p^s}\;\mathbf{d}s=-\sum_{p\,\in\mathrm{\,primes}}\frac{1}{p^s\log p}+\mathbf{C}


\int_{1}^{\infty}\sum_{p\,\in\mathrm{\,primes}}\frac{1}{p^s}\;\mathbf{d}s=\sum_{p\,\in\mathrm{\,primes}}\frac{1}{p\log p}

[edit] See also

[edit] External links

This mathematical analysis-related article is a stub. You can help Wikipedia by expanding it.