Primary cyclic group

From Wikipedia, the free encyclopedia

A primary cyclic group is a cyclic group of prime power order

C_{p^m}\;

(for any prime p, and natural number m).

Every finite abelian group G may be written as a finite direct sum of primary cyclic groups:

G=\bigoplus_{1\leq i \leq n}C_{{p_i}^{m_i}}\;

This expression is essentially unique: there is a bijection between the sets of groups in two such expressions, which maps each group to one that is isomorphic.

Primary cyclic groups are characterised among finitely generated abelian groups as the torsion groups that cannot be expressed as a direct sum of two non-trivial groups. As such they, along with the group of integers, form the building blocks of finitely generated abelian groups.

The subgroups of a primary cyclic group are linearly ordered by inclusion. The only other groups that have this property are the quasicyclic groups.

This algebra-related article is a stub. You can help Wikipedia by expanding it.