Power factor correction

From Wikipedia, the free encyclopedia

Power factor correction (PFC) is the process of adjusting the characteristics of electric loads in order to improve power factor so that it is closer to unity (1). Power factor correction may be applied either by an electrical power transmission utility to improve the stability and efficiency of the transmission network; or, correction may be installed by individual electrical customers to reduce the costs charged to them by their electricity supplier. A high power factor is generally desirable in a transmission system to reduce transmission losses and improve voltage regulation at the load.

Contents

[edit] Linear loads

Electrical loads consuming alternating current power consume both real power, which does useful work, and reactive power, which dissipates no energy in the load and which returns to the source on each alternating current cycle. The vector sum of real and reactive power is the apparent power. The ratio of real power to apparent power is the power factor, a number between 0 and less than 1 . The presence of reactive power causes the real power to be less than the apparent power, and so, the electric load has a power factor of less than 1.

The reactive power increases the current flowing between the power source and the load, which increases the power losses through transmission and distribution lines. This results in additional costs for power companies. Therefore, power companies require their customers, especially those with large loads, to maintain their power factors above a specified amount (usually 0.90 or higher) or be subject to additional charges. Electricity utilities measure reactive power used by high demand customers and charge higher rates accordingly. Some consumers install power factor correction schemes at their factories to cut down on these higher costs.

Electrical engineers involved with the generation, transmission, distribution and consumption of electrical power have an interest in the power factor of loads because power factors affect efficiencies and costs for both the electrical power industry and the consumers. In addition to the increased operating costs, reactive power can require the use of wiring, switches, circuit breakers, transformers and transmission lines with higher current capacities.

Power factor correction brings the power factor of an AC power circuit closer to 1 by supplying reactive power of opposite sign, adding capacitors or inductors which act to cancel the inductive or capacitive effects of the load, respectively. For example, the inductive effect of motor loads may be offset by locally connected capacitors. Sometimes, when the power factor is leading due to capacitive loading, inductors (also known as reactors in this context) are used to correct the power factor. In the electricity industry, inductors are said to consume reactive power and capacitors are said to supply it, even though the reactive power is actually just moving back and forth between each AC cycle.

Instead of using a capacitor, it is possible to use an unloaded synchronous motor. The reactive power drawn by the synchronous motor is a function of its field excitation. This is referred to as a synchronous condenser. It is started and connected to the electrical network. It operates at full leading power factor and puts VARs onto the network as required to support a system’s voltage or to maintain the system power factor at a specified level. The condenser’s installation and operation are identical to large electric motors. Its principal advantage is the ease with which the amount of correction can be adjusted; it behaves like an electrically variable capacitor.

[edit] Non-linear loads

Non-linear loads create harmonic currents in addition to the original AC current. Addition of linear components such as capacitors and inductors cannot cancel these harmonic currents, so other methods such as filters or active power factor correction are required to smooth out their current demand over each cycle of alternating current and so reduce the generated harmonic currents.

[edit] Switched-mode power supplies

A typical switched-mode power supply first makes a DC bus, using a bridge rectifier or similar circuit. The output voltage is then derived from this DC bus. The problem with this is that the rectifier is a non-linear device, so the input current is highly non-linear. That means that the input current has energy at harmonics of the frequency of the voltage.

This presents a particular problem for the power companies, because they cannot compensate for the harmonic current by adding simple capacitors or inductors, as they could for the reactive power drawn by a linear load. Many jurisdictions are beginning to legally require power factor correction for all power supplies above a certain power level.

The simplest way to control the harmonic current is to use a filter: it is possible to design a filter that passes current only at line frequency (e.g. 50 or 60 Hz). This filter reduces the harmonic current, which means that the non-linear device now looks like a linear load. At this point the power factor can be brought to near unity, using capacitors or inductors as required. This filter requires large-value high-current inductors, however, which are bulky and expensive.

It is also possible to perform active PFC. In this case, a boost converter is inserted between the bridge rectifier and the main input capacitors. The boost converter attempts to maintain a constant DC bus voltage on its output while drawing a current that is always in phase with and at the same frequency as the line voltage. Another switchmode converter inside the power supply produces the desired output voltage from the DC bus. This approach requires additional semiconductor switches and control electronics, but permits cheaper and smaller passive components. It is frequently used in practice. Due to their very wide input voltage range, many power supplies with active PFC can automatically adjust to operate on AC power from about 100 V (Japan) to 240 V (UK). That feature is particularly welcome in power supplies for laptops.

[edit] Passive PFC

This is a simple way of correcting the nonlinearity of a load by using capacitor banks. It is not as effective as active PFC. Switching the capacitors into or out of the circuit causes harmonics, which is why active PFC or a synchronous motor is preferred.

[edit] Active PFC

An Active Power Factor Corrector (active PFC) is a power electronic system that controls the amount of power drawn by a load in order to obtain a Power factor as close as possible to unity. In most applications, the active PFC controls the input current of the load so that the current waveform is proportional to the mains voltage waveform (a sinewave).

Some types of active PFC are

  1. Boost
  2. Buck
  3. Buck-boost

Active power factor correctors can be single-stage or multi-stage.

Active PFC is the most effective and can produce a PFC of 0.99 (99%).

[edit] See also

[edit] References

  • A. K. Maini "Electronic Projects for Beginners", "Pustak Mahal", 2nd Edition: March, 1998 (India)

[edit] External links