Positive invariant set

From Wikipedia, the free encyclopedia

A positive invariant set is a set with the following properties:

Given a system  \dot{x}=f(x) and trajectory  x(t,x_0) \, where  x_0 \, is the initial point. Let  \mathcal{O} \triangleq \left \lbrace x \in \mathbb{R}^n| \phi (x) = 0 \right \rbrace where φ is a real valued function that characterizes \mathcal{O}. The set \mathcal{O} is said to be positively invariant if x_0 \in \mathcal{O} implies that x(t,x_0) \in \mathcal{O} \ \forall \ t \ge 0

[edit] References

  • Dr. Arun D. Mahindrakar [1]