Talk:Population genetics

From Wikipedia, the free encyclopedia

WikiProject Genetics This article is part of WikiProject Genetics, an attempt to build a comprehensive and detailed guide to genetics on Wikipedia. If you would like to participate, you can edit this page, or visit the project page to join the project and/or contribute to the discussion.
??? This article has not yet received a rating on the quality scale.
??? This article has not yet received an importance rating.
A summary of this article appears in genetics.

This is the talk page for discussing improvements to the Population genetics article.

Article policies
This article is within the scope of WikiProject Human Genetic History, a collaborative effort to improve Wikipedia's coverage of genetic genealogy, genetics-based population history, and associated theory and methods. If you would like to participate, please visit the project page, where you can join the project and/or contribute to the discussion.
Charles Darwin This article is part of WikiProject Evolutionary biology, an attempt at building a useful set of articles on evolutionary biology and its associated subfields such as population genetics, quantitative genetics, molecular evolution, phylogenetics, evolutionary developmental biology. It is distinct from the WikiProject Tree of Life in that it attempts to cover patterns, process and theory rather than systematics and taxonomy. If you would like to participate, there are some suggestions on this page (see also Wikipedia:Contributing FAQ for more information) or visit WikiProject Evolutionary biology.
Start rated as start-Class on the assessment scale
High rated as high-importance on the assessment scale

Human Genome Epidemiology Network, or HuGENetâ„¢ is a global collaboration of individuals and organizations committed to the assessment of the impact of human genome variation on population health and how genetic information can be used to improve health and prevent disease. Find out more at http://www.cdc.gov/genomics/hugenet/default.htm Lid6 17:45, 15 September 2006 (UTC)

Contents

[edit] The Coalescent

Given that all (well, most) modern population genetics revolves around coalesence theory (The Coalescent), there really ought to be a page....There is (for example) already a page on Ewens's sampling formula --DJO 22:24, 19 Apr 2005 (UTC)

Except that the word the should probably not be included in the article title, and if it's included, coalescent should probably have a lower-case initial c. Michael Hardy 22:50, 19 Apr 2005 (UTC)
Point taken - I think that since people usually refer to The Coalescent, it should probably be The coalescent in Wikipedia, or even better Coalescence theory--DJO 08:21, 20 Apr 2005 (UTC)
I prefer coalescence (genetics). - Samsara 00:28, 29 December 2005 (UTC)

[edit] Mayr and Dobzhansky

Would it be inappropriate to link Mayr and Dobzhansky as founders of the modern synthesis (maybe Huxley too?), unless you consider them too recent...Slrubenstein

Not at all, but I think that should be on the modern synthesis page, as neither Mayr nor Dobzhansky developed population genetics theory themselves very much (although they obviously did use population genetics). In fact we should probably reword the page, population genetics didn't really "spring" from the modern synthesis, but the other way around, pop gen was an ingredient in the modern synthesis, along with biometrics, paleontology, systematics etc. Douglas Futuyma's Evolutionary Biology (Sinauer 1997) has a very nice breakdown of the contributions of various areas of biology to the modern synthesis. -- Lexor 22:33 22 May 2003 (UTC)

[edit] Recruiting for Wikibooks Biology book(s)

Warm greetings from sister project Wikibooks where I am writing a general biology textbook all by my lonesome. My profs donated a sizable bunch of notes that make up the structure of an entire introductory biology book. However these notes are in outline form and need to be fleshed out into full text. Then, some images .. I am confident that this will become the standard college text over time but need some help to get it there. --karlwick

[edit] Should this article get merged with quantitative genetics ???

No! Quantitative genetics is a study of the genetic basis of complex (i.e. multi-gene) traits. This may be evolutionary, but more often that not is in terms of artificial breeding/selection. Population genetics is a study of the causes and effects of genetic variation within (and between) populations.--DJO 21:56, 19 Apr 2005 (UTC)

[edit] Dysgenics

It'd be nice if the "dysgenics" article could have a better explanation of it's status in current population genetics. I've looked up some stuff at a library, but didn't find anything much :-P I can't tell if it's an avoided subject, something disproved ages ago, or just something nobody cares much about. Flammifer

I've made it a genetics stub. - Samsara 14:08, 9 January 2006 (UTC)

[edit] Epistasis - nearly non-stub

Dear All,

I've done a considerable amount of work on the epistasis article today (compared to what was there previously). I am hopeful that we can let it stand as a proper article rather than a stub if one more person who knows anything about it puts in an equivalent amount of work. I'll try and find a few published references for it. Please edit away, and make suggestions on the talk page as to what else might be included. Genetic interactions (where some of the original material contributed to epistasis has found a new home) could perhaps be improved at the same time. Thanks. - Samsara 14:01, 9 January 2006 (UTC)


[edit] Math

there's also a considerable amount of math behind population genetics. It would perhaps be useful to include some formuli.

[edit] External Links

The basic science of public health genomics is "human genome epidemiology," the set of methods for collecting, analyzing, and synthesizing data on the distribution of gene variants, gene-disease associations, and gene-environment and gene-gene interactions. Population-based epidemiologic studies are the basis for estimating the absolute, relative, and attributable risks that gauge the effects of genomic factors on the health of individuals and populations. Find out more at http://www.cdc.gov/genomics/population.htm