Pompeiu problem

From Wikipedia, the free encyclopedia

In mathematics, the Pompeiu problem is a conjecture in integral geometry, named for Dimitrie Pompeiu, who posed the problem in 1929, as follows. Suppose f is a nonzero continuous function defined on a Euclidean space, and K is a Lipschitz domain, so that the integral of f vanishes on every congruent copy of K. Then the domain is a ball.

A special case is Schiffer's conjecture.

[edit] References

  • Dimitrie Pompeiu, Sur certains systèmes d'équations linéaires et sur une propriété intégrale des fonctions de plusieurs variables, Comptes Rendus de l'Académie des Sciences Paris Série I. Mathématique, 188 (1929), 1138 –1139.

[edit] External links

This mathematical analysis-related article is a stub. You can help Wikipedia by expanding it.