Poloxamer

From Wikipedia, the free encyclopedia

Poloxamers, also known by the trade name Pluronics[1], are nonionic triblock copolymers composed of a central hydrophobic chain of polyoxypropylene (poly(propylene oxide)) flanked by two hydrophilic chains of polyoxyethylene (poly(ethylene oxide)). Because the lengths of the polymer blocks can be customized, many different poloxamers exist that have slightly different properties. For the generic term "poloxamer", these copolymers are commonly named with the letter "P" (for poloxamer) followed by three digits, the first two digits x 100 give the approximate molecular mass of the polyoxypropylene core, and the last digit x 10 gives the percentage polyoxyethylene content (e.g., P407 = Poloxamer with a polyoxypropylene molecular mass of 4,000 g/mol and a 70% polyoxyethylene content) . For the Pluronic tradename, coding of these copolymers starts with a letter to define its physical form at room temperature (L = liquid, P = paste, F = flake (solid)) followed by two or three digits, the first digit(s) refer to the molecular mass of the polyoxypropylene core (determined from BASF's Pluronic grid)and the last digit x 10 gives the percentage polyoxyethylene content (e.g., F127 = Pluronic with a polyoxypropylene molecular mass of 4,000 g/mol and a 70% polyoxyethylene content). In the example given, poloxamer 407 (P407) = Pluronic F127.

[edit] Uses of poloxamers

Because of their amphiphilic structure, the polymers have surfactant properties that make them useful in industrial applications. Among other things, they can be used to increase the water solubility of hydrophobic, oily substances or otherwise increase the miscibility of two substances with different hydrophobicities. For this reason, these polymers are commonly used in industrial applications, cosmetics, and pharmaceuticals. They have also been used as model systems for drug delivery applications.

[edit] See also

Languages