Talk:Plutonium

From Wikipedia, the free encyclopedia

This article is within the scope of the following WikiProjects:
This article has been reviewed by the Version 1.0 Editorial Team.
Plutonium was a good article nominee, but did not meet the good article criteria at the time. There are suggestions below for improving the article. Once these are addressed, the article can be renominated. Editors may also seek a reassessment of the decision if they believe there was a mistake.

Reviewed version: March 5, 2007

Contents


[edit] Compounds of plutonium

The other actinides that commonly form actinyl cores are uranium and neptunium, and in unusually oxidized forms also Am and Cm. The actinyl moiety is not neutral as written in this part of the posting. The Pu(V)O2(+) and Pu(VI)O2(2+) ions are the two plutonyl ions, which indeed form complexes with carbonate.

Secondly, at least in aqueous solution, I don't believe that nitrite NO2(-) complexes have ever been observed for the plutonyl ions or any of the plutonium ions for that matter. The redox chemistry of nitrite and plutonium would seem to prohibit this. Nitrite anion is actually a well known reagent for the reduction of plutonium from the penta- and hexavalent states to Pu(IV)/Pu(III).

Third, neutralization of Pu(IV) from nitric acid solution does not form PuO2, but a compound of plutonium known as "polymer" or "colloidal plutonium" that is of unknown structure and stoichiometry (see Cleveland's "Chemistry of Plutonium). It is agreed that the oxidation state of polymer is tetravalent but the stoichiometry and structure is to this point unknown. Polymer formation is usually avoided because it is rather intractable. The post is correct that it is formed by the neutralization of acid solutions. PuO2 is formed by heating of the nitrate, oxalate, peroxide, hydroxide, etc salts of Pu(IV) at about 400 C or higher.

Lastly, Pu(VII) is only marginally stable in concentrated alkali solutions, and is produced by the bubbling of O3 (ozone) through the solution. It is not, in my experience, red but actually a blackish blue color. The precipitates of the Sr3(PuO5)2 and Ba3(PuO5)2 complexes, assumed by analogy to be isostructural with the Np(VII) complexes are also blackish blue. Other precipitates of Pu(VII) are reported to be green. Pu(VI) solids can be a brown or red color. Regardless the solutions of Pu(VII) are blackish blue.

The photograph of the plutonium solutions in different acids is not originally from LBNL as stated. The digital version at LBNL is a copy of a photograph from Los Alamos. At least on the photograph I have. I will supply the actual document number later if you wish to change the citation.


The photos were taken by Dave Hobart and Phil Palmer. The citation for the photos is: Hobart, D. E. and Palmer, P. D. (1991) "Color Photographs of Plutonium Aqueous Solutions," Lawrence Berkeley Laboratory, Glenn T. Seaborg Archive, LBNL Image Library, Image Files 96B05591 and 96B05592, Internet web sites:
http://imglib.lbl.gov/ImgLib/COLLECTIONS/BERKELEY-LAB/SEABORG-ARCHIVE/index/96B05592.html
http://imglib.lbl.gov/ImgLib/COLLECTIONS/BERKELEY-LAB/SEABORG-ARCHIVE/index/96B05591.html Ksboland 17:23, 30 October 2007 (UTC)

[edit] Taste of Plutonium

I have removed: "Not surprisingly, it has a metallic taste. ref: http://www.nytimes.com/books/first/w/welsome-plutonium.html?_r=1&oref=slogin" because taste of chemicals should stay unnoted for safety reasons. Technician who may need that kind of information could easily look into science work papers. --Borislav Dopudja 08:10, 3 October 2006 (UTC)

What's the safety reason, now? --Fastfission 20:16, 3 October 2006 (UTC)

Every indication that some chemical can be tasted, or that it even have a taste must be removed from easily accessible materials. Depending on the amount, practically every chemical is poisonous. And there is also no use of, for instance, knowing that arsenic tastes like garlic. --Borislav Dopudja 12:51, 4 October 2006 (UTC)

Well, I could imagine potential uses for knowing that arsenic tastes like garlic (it would give a good poisoner an idea of what sorts of foods would complement it well!), though I can't imagine a potential use for knowing that plutonium tastes "metallic", which is ambiguous to the point of uselessness. But anyway I don't really care either way, I was just curious what your reasoning was. --Fastfission 23:19, 4 October 2006 (UTC)

You know, plutonium is not so rare as you might think. Technicians who handle plutonium, uranium or other radioactive substances usually are not aware what that really is. --Borislav Dopudja 11:56, 5 October 2006 (UTC)

Please note that information of this type has two sides, like all information. Knowing the taste of chemicals can help you identify spills, leaks, contamination problems, and long-term ingestion poisoning. The garlic sweat and breath has warned many a selenium and telurium worker they weren't being careful enough, long before any damage was done. SBHarris 19:24, 30 November 2006 (UTC)

Hm. Good point. - Although one can expect that someone working with Se and As is aware what that is. --Borislav Dopudja 13:00, 8 February 2007 (UTC)

Are you seriously trying to have us believe that someone working with a significant quantity of plutonium, a strictly regulated substance which can only be made in nuclear reactors, would try to taste it because they didn't know what it was? I mean seriously... 213.55.27.154 18:27, 31 March 2007 (UTC)
Haha, no I think the point was if someone accidently injested a particular chemical (e.g. they get it on their hands), they would know. Lightnin Boltz (talk) 10:28, 23 May 2008 (UTC)


Hi, I'm not at all sure where this goes, but I've noticed that under the "Selected Isotopes" section, it states that Pu-240 decays by spontaneous fission and alpha-emission. However, when you click on the alpha-emission link, it takes you to the article about Beta-emission. I would fix this myself, but I don't know how Pu-240 does decay, or how to fix it. Thanks 217.42.19.165 (talk) 11:21, 5 June 2008 (UTC)

[edit] Toxicity

I feel that this section is somewhat biased. It seems to significantly downplay the dangers of plutonium's toxicity. Although plutonium may not be the "deadliest know substance", it is still something that should handled with the utmost care, something that this section does not stress. Any thoughts? 128.192.57.104 17:08, 19 March 2007 (UTC)


I would leave the toxicity section alone. There are a number of people who might look at this article based on the statements by Ralph Nader and the counter statements by Bernard Cohen. Both about the toxicity of Pu. Starkrm 22:51, 22 March 2007 (UTC) 21:45, 21 March 2007 (UTC)


Th toxicity section states that no one has ever died from direct exposure to plutonium. Plutonium was in Fat Man, wasn't it? Many people not in the initial blast radius died later of radiation poisoning, which could only be from exposure to plutonium. Am I missing something?--Elmorell 13:12, 21 April 2007 (UTC)

Yes, you're certainly missing something.

A nuclear detonation produces a great deal of neutrons and gamma radiation, along with highly radioactive fission products. These would be the significant factors with regards to radiation effects from a nuclear weapon, not the relatively small amount of radioactivity from any left-over Plutonium or Uranium.AWeishaupt 11:28, 16 June 2007 (UTC)

The sentence in the Toxicity section: "In addition, beta and gamma emitters (including the carbon-14 and potassium-40 in nearly all food) can cause cancer on casual contact, which alpha emitters cannot." while being true is very misleading. It seems to imply that the K-40 and C-14 in food poses a significant cancer risk. Furthermore, the comparison to food also brings to mind ingestion, in which case alpha emitters are very harmful. I know the sentence refers to the danger on "casual contact", but that is very easy to overlook in this context. Again, I have no beef with the validity of this sentence, but it seems misleading and just plain unnecessary. Beachbumltj 17:40, 15 June 2007 (UTC)

With the exception of making smaller more destructive nuclear warheads and easy to transport lightweight atom bombs and certain esoteric energy sources for satellites, spacecraft, and remote earthbound sensors, plutonium makes no sense. Its inorganic half-life, toxicity, and biologic half-life make it the pentultimate toxic compound. The problems with maintanance and long term secure disposal are horrific compared to other nuclear sources that we continually learn more ways to utilize in a safer fashion. Ideally you want a nuclear source easy to handle, shape and machine, store, and develop a manageable life cycle and plutonium is not it. Simply put its time a simple world-wide moritorium be enacted to eliminate its continued manufacture and use. Plutonium is something that never should have been made. This isn't meant to be anti-nuclear technology per-se as one more alternative energy source. But with what we have learned we now know better ways to engineer new reactors and better handle the nuclear fuel cycle more safely and environmentally sound for other radionuclides. Its just amazing that North Korea and Iran seem to be on dual track plutonium and uranium technologies as if nothing has been learned.209.101.236.168 (talk) 07:28, 25 November 2007 (UTC)

This discussion is for improving the article, not for stating political views. By the way, there are a number of errors in your understanding of plutonium. Man with two legs (talk) 11:05, 25 November 2007 (UTC)