Plasma parameter

From Wikipedia, the free encyclopedia

The plasma parameter is a dimensionless number, denoted by capital Lambda, Λ, which measures the average number of electrons contained within a Debye sphere (a sphere of radius the Debye length) in a plasma (but note that the word parameter is usually used in plasma physics to refer to bulk plasma properties in general: see plasma parameters). It is defined as:

 \Lambda = \frac {4\pi}{3} n \lambda_D^3

where

n is the number density of particles,
λD is the Debye length.

Often the factor of 4π / 3 is dropped. When the Debye length is given by  \lambda_D = \sqrt{\frac{\epsilon_0 k T_e}{n_e q_e^2}}, the plasma parameter is given by[1]:

 \Lambda = \frac{(\epsilon_0 k T_e)^{3/2}}{q_e^3 n_e^{1/2}}

where

ε0 is the permittivity of free space,
k is Boltzmann's constant,
qe is the electron charge,
Teis the electron temperature.

Confusingly, some authors define the plasma parameter as :

 \epsilon_p = \Lambda^{-1}\ .

[edit] The ideal plasma approximation

One of the criteria which determine whether a collection of charged particles can rigorously be termed an ideal plasma is that Λ>>1. When this is the case, collective electrostatic interactions dominate over binary collisions, and the plasma particles can be treated as if they only interact with a smooth background field, rather than through pairwise interactions (collisions) [2]. The equation of state of ideal plasma is that of ideal gas.

[edit] Plasma properties and Λ

The magnitude of Λ can be summarised below [3]:

Description Plasma parameter magnitude
Λ<<1 Λ>>1
Coupling Strongly coupled plasma Weakly coupled plasma
Debye sphere Sparsely populated Densely populated
Electrostatic influence Almost continuously Occasional
Typical characteristic Cold and dense Hot and diffuse
Examples Solid-density laser ablation plasmas
Very "cold" "high pressure" arc discharge
Inertial fusion experiments
White dwarfs / neutron stars atmospheres
Ionospheric physics
Magnetic fusion devices
Space plasma physics
Plasma ball

[edit] References

  1. ^ Miyamoto, K., Fundamentals of Plasma Physics and Controlled Fusion, (Iwanami, Tokyo, 1997)
  2. ^ J.D. Callen, University of Wisconsin-Madison, Draft Material for Fundamentals of Plasma Physics book: Collective Plasma Phenomena PDF
  3. ^ See The plasma parameter lecture notes from Richard Fitzpatrick
Languages