Plantar fascia
From Wikipedia, the free encyclopedia
Plantar fascia | |
---|---|
Muscles of the sole of the foot. First layer. (Plantar aponeurosis visible at top center.) | |
Latin | aponeurosis plantaris |
Gray's | subject #131 490 |
Dorlands/Elsevier | a_53/12146774 |
The plantar fascia (or plantar aponeurosis) is the thick connective tissue which supports the arch of the foot. It runs from the tuberosity of the calcaneus forward to the heads of the metatarsal bones. It is the source of the painful condition plantar fasciitis.
Contents |
[edit] Anatomy of the plantar fascia
The plantar fascia is a broad structure that spans between the medial calcaneal tubercle and the proximal phalanges of the toes. There is still some debate as to whether it is deep fascia or an aponeurosis. The Dorland’s Medical Dictionary defines an aponeurosis as:.(i) a white, flattened or ribbon-like tendinous expansion, serving mainly to connect a muscle with the parts that it moves, (ii) a term formerly applied to certain fasciae. Further, it defines the plantar aponeurosis as: bands of fibrous tissue radiating toward the bases of the toes from the medial process of the tuber calcanei; also called the plantar fascia. The plantar fascia is made up of predominantly longitudinally oriented collagen fibers. There are three distinct structural components: the medial component, the central component, and the lateral component (see the figure on your right)). The central component is the largest and most prominent.
In younger people the plantar fascia is also intimately related to the Achilles tendon, with a continuous fascial connection between the two from the distal aspect of the Achilles to the origin of the plantar fascia at the calcaneal tubercle. However, the continuity of this connection decreases with age to a point that in the elderly there are few, if any connecting fibers. There are also distinct attachments of the plantar fascia and the Achilles tendon to the calcaneus so the two do not directly impact on each other. Nevertheless, there is an indirect relationship whereby if the toes are dorsiflexed, the plantar fascia tightens via the windlass mechanism. If a tensile force is then generated in the Achilles tendon it will increase tensile strain in the plantar fascia. Clinically, this relationship has been used as a basis for treatment for plantar fasciitis, with stretches and night stretch splinting being applied to the gastrocnemius/soleus muscle unit.
[edit] Biomechanics of the plantar fascia
This article does not cite any references or sources. (April 2007) Please help improve this article by adding citations to reliable sources. Unverifiable material may be challenged and removed. |
The plantar fascia contributes to support of the arch of the foot by acting as a tie-rod, where it undergoes tension when the foot bears weight. One biomechanical model estimated it carries as much as 14% of the total load of the foot. In an experiment using cadavers, it was found that failure of the plantar fascia averaged at loads of 1189 ± 244 newtons (121 ± 24 lbf/ 55 ± 11 kgf). Interestingly, failure most often occurred at the proximal attachment to the calcaneus, which is consistent with the usual location of symptoms (i.e. in plantar fasciitis). Complete rupture or surgical release of the plantar fascia leads to a decrease in arch stiffness and a significant collapse of the longitudinal arch of the foot. By modeling it was predicted such conditions would result in a 17% increase in vertical displacement and a 15% increase in horizontal elongation of the foot when it was loaded at 683 newtons (69.6 kgf/31.6 lbf). Surgical release also significantly increases both stress in the plantar ligaments and plantar pressures under the metatarsal heads. Although most of the figures mentioned above are from either cadaver studies or investigations using models, they highlight the relatively large load the plantar fascia is subjected to while contributing to the structural integrity of the foot.
The plantar fascia also has an important role in dynamic function during gait. It was found the plantar fascia continuously elongated during the contact phase of gait. It went through rapid elongation before and immediately after mid-stance, reaching a maximum of 9% to 12% elongation between mid-stance and toe-off. During this phase the plantar fascia behaves like a spring, which may assist in conserving energy. In addition, the plantar fascia has a critical role in normal mechanical function of the foot, contributing to the "windlass mechanism". When the toes are dorsiflexed in the propulsive phase of gait, the plantar fascia becomes tense, resulting in elevation of the longitudinal arch and shortening of the foot (see 3A). One can likened this mechanism to a cable being wound around the drum of a windlass (see 3B); the plantar fascia being the cable, the metatarsal head the drum, and the handle, the proximal phalanx. Therefore, the plantar fascia has a number of roles, the most important of these including supporting the arch of the foot and contributing to the windlass mechanism.
[edit] See also
[edit] External links
- Duke Orthopedics plantar_fascia
- Norman/Georgetown soleoffoot (soleoffoot1)
- Diagram at hipusa.com
- Diagram at patient.co.uk