Planetary migration
From Wikipedia, the free encyclopedia
Planetary migration occurs when a planet or other stellar satellite interacts with a disk of gas or planetesimals, resulting in the alteration of the satellite's orbital parameters, especially its semi-major axis. Planetary migration is the most likely explanation for 'hot Jupiters': extrasolar planets with jovian masses, but orbits of only a few days. The generally accepted theory of planet formation from a protostellar accretion disk predicts such planets cannot form so close to their stars, as there is insufficient mass at such small radii and the temperature is too high to allow the formation of rocky or icy planetesimals. It has also become clear that terrestrial-mass planets may be subject to rapid inward migration if they form while the gas disk is still present. This may affect the formation of the cores of the giant planets (which have masses of the order of 10 Earth masses), if those planets form via the core accretion mechanism.
Contents |
[edit] Types of disk
[edit] Gas disk
Protoplanetary gas disks around young stars are observed to have lifetimes of a few million years. If planets with masses of around an Earth mass or greater form while the gas is still present, the planets are thought to transfer angular momentum to the surrounding gas in the protoplanetary disk so that their orbits spiral gradually inwards towards the primary.
[edit] Planetesimal disk
During the late phase of planetary system formation, massive protoplanets and planetesimals gravitationally interact in a chaotic manner causing many planetesimals to be thrown into new orbits. This results in angular momentum exchange between the planets and the planetesimals, and leads to migration (either inward or outward). Outward migration of Neptune is believed to be responsible for the resonant capture of Pluto and other Plutinos into the 3:2 resonance with Neptune.
[edit] Types of migration
[edit] Type I migration
Terrestrial mass planets drive spiral density waves in the surrounding gas or planetesimal disk. An imbalance occurs in the strength of the interaction with the spirals inside and outside the planet's orbit. In most cases, the outer wave exerts a somewhat greater torque on the planet than the interior wave. This causes the planet to lose angular momentum and the planet then migrates inwards on timescales that are short relative to the million-year lifetime of the disk.
[edit] Type II migration
Planets of more than about 10 Earth masses clear a gap in the disk, ending Type I migration. However, material continues to enter the gap on the timescale of the larger accretion disk, moving the planet and gap inward on the accretion timescale of the disk. This is presumably how 'hot Jupiters' form.
[edit] in the Solar system
The outer two planets of our solar system. Uranus and Neptune, (known as the "ice giants") are believed to have formed in orbits near Jupiter and Saturn but to have migrated outward to their current positions over hundreds of millions of years.[1]
The migration of the outer planets is also necessary to account for the existence and properties of the Solar System's outermost regions.[3] Beyond Neptune, the Solar System continues into the Kuiper belt, the scattered disc, and the Oort cloud, three sparse populations of small icy bodies thought to be the points of origin for most observed comets. At their distance from the Sun, accretion was too slow to allow planets to form before the solar nebula dispersed, and thus the initial disc lacked enough mass density to consolidate into a planet. The Kuiper belt lies between 30 and 55 AU from the Sun, while the farther scattered disc extends to over 100 AU,[3] and the distant Oort cloud begins at about 50,000 AU.[4] Originally, however, the Kuiper belt was much denser and closer to the Sun, with an outer edge at approximately 30 AU. Its inner edge would have been just beyond the orbits of Uranus and Neptune, which were in turn far closer to the Sun when they formed (most likely in the range of 15–20 AU), and in opposite locations, with Uranus farther from the Sun than Neptune.[3][2]
After the formation of the Solar System, the orbits of all the giant planets continued to change slowly, influenced by their interaction with large number of remaining planetesimals. After 500–600 million years (about 4 billion years ago) Jupiter and Saturn fell into a 2:1 resonance; Saturn orbited the Sun once for every two Jupiter orbits.[3] This resonance created a gravitational push against the outer planets, causing Neptune to surge past Uranus and plough into the ancient Kuiper belt. The planets scattered the majority of the small icy bodies inwards, while themselves moving outwards. These planetesimals then scattered off the next planet they encountered in a similar manner, moving the planets' orbits outwards while they moved inwards.[5] This process continued until the planetesimals interacted with Jupiter, whose immense gravity sent them into highly elliptical orbits or even ejected them outright from the Solar System. This caused Jupiter to move slightly inward. Those objects scattered by Jupiter into highly elliptical orbits formed the Oort cloud;[3] those objects scattered to a lesser degree by the migrating Neptune formed the current Kuiper belt and scattered disc.[3] This scenario explains the Kuiper belt's and scattered disc's present low mass. Some of the scattered objects, including Pluto, became gravitationally tied to Neptune's orbit, forcing them into mean-motion resonances.[6] Eventually, friction within the planetesimal disc made the orbits of Uranus and Neptune circular again.[3][7]
In contrast to the outer planets, the inner planets are not believed to have migrated significantly over the age of the Solar System, because their orbits have remained stable following the period of giant impacts.[8]
[edit] See also
[edit] References
- Goldreich, P., and Tremaine, S. 1979, Astrophysical Journal, 233, 857
- Lin, D. N. C., and Papaloizou, J. 1979, Monthly Notices of the Royal Astronomical Society, 186, 799
- ^ E. W. Thommes, M. J. Duncan, H. F. Levison (2002). "The Formation of Uranus and Neptune among Jupiter and Saturn". Astronomical Journal 123: 2862. doi: . arXiv:astro-ph/0111290.
- ^ a b R. Gomes, H. F. Levison, K. Tsiganis, A. Morbidelli (2005). "Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets" (PDF). Nature 435: 466. doi: .
- ^ a b c d e f g Harold F. Levison, Alessandro Morbidelli, Crista Van Laerhoven et al. (2007). "Origin of the Structure of the Kuiper Belt during a Dynamical Instability in the Orbits of Uranus and Neptune". arXiv:0712.0553.
- ^ Alessandro Morbidelli (3 February 2008). Origin and dynamical evolution of comets and their reservoirs (PDF). arxiv. Retrieved on 2007-05-26.
- ^ G. Jeffrey Taylor (21 August 2001). Uranus, Neptune, and the Mountains of the Moon. Planetary Science Research Discoveries. Hawaii Institute of Geophysics & Planetology. Retrieved on 2008-02-01.
- ^ R. Malhotra (1995). "The Origin of Pluto's Orbit: Implications for the Solar System Beyond Neptune". Astronomical Journal 110: 420. doi: . arXiv:astro-ph/9504036.
- ^ M. J. Fogg, R. P. Nelson (2007). "On the formation of terrestrial planets in hot-Jupiter systems". Astronomy & Astrophysics 461: 1195. doi: . arXiv:astro-ph/0610314.
- ^ Douglas N. C. Lin (May 2008). "The Genesis of Planets" (fee required). Scientific American 298 (5): 50–59.